
Fast Algorithms for Uncertainty Propagation, and
Their Applications to Structural Integrity

Andrzej Pownuk, Jakub Cerveny, and Jerald J. Brady
University of Texas at El Paso

El Paso, TX 79968
Contact email ampownuk@utep.edu

Abstract—In many practical situations, we need to know how
uncertainty propagates through data processing algorithms, i.e.,
how the uncertainty in the inputs affects the results of data
processing. This problem is important for all types of uncertainty:
probabilistic, interval, and fuzzy. From the computational view-
point, however, this problem is much more complex for interval
and fuzzy uncertainty. Therefore, for these types of uncertainty,
it is desirable to design faster algorithms.

In this paper, we describe faster algorithms for two practically
important situations:

• linearization situations, when the approximation errors are
small and therefore, the data processing algorithms can be
replaced by a linear function, and

• monotonic situations, when the dependence of the result y
of data processing on each of the inputs x1, . . . , xn is either
monotonically increasing or monotonically decreasing.

I. PRACTICAL NEED FOR UNCERTAINTY PROPAGATION

In many practical situations, we are interested in the value
of a quantity y which is difficult or even impossible to
measure directly. To estimate this difficult-to-measure quantity
y, we measure or estimate related easier-to-measure quantities
x1, . . . , xn which are related to the desired quantity y by a
known relation y = f(x1, . . . , xn). Then, we apply the relation
f to the estimates x̃1, . . . , x̃n for xi and produce an estimate
ỹ = f(x̃1, . . . , x̃n) for the desired quantity y.

In the simplest cases, the relation f(x1, . . . , xn) may be
an explicit expression: e.g., if we know the current x1 and
the resistance x2, then we can measure the voltage y by
using Ohm’s law y = x1 · x2. In many practical situations,
the relation between xi and y is much more complicated:
the corresponding algorithm f(x1, . . . , xn) is not an explicit
expression, but a complex algorithm for solving an appropriate
non-linear equation (or system of equations).

Estimates are never absolutely accurate:

• measurements are never absolutely precise, and
• expert estimates can only provide approximate values of

the directly measured quantities x1, . . . , xn.

In both cases, the resulting estimates x̃i are, in general, differ-
ent from the actual (unknown) values xi. Due to these estima-
tion errors ∆xi

def= x̃i − xi, even if the relation f(x1, . . . , xn)
is exact, the estimate ỹ = f(x̃1, . . . , x̃n) is different from the

actual value y = f(x1, . . . , xn): ∆y
def= ỹ − y �= 0.

(In many situations, when the relation f(x1, . . . , xn) is only
known approximately, there is an additional source of the

approximation error in y caused by the uncertainty in knowing
this relation.)

It is therefore desirable to find out how the uncertainty ∆xi

in estimating xi affects the uncertainty ∆y in the desired
quantity, i.e., how the uncertainties ∆xi propagate via the
algorithm f(x1, . . . , xn).

II. PROPAGATION OF PROBABILISTIC UNCERTAINTY

Often, we know the probabilities of different values of ∆xi.
For example, in many cases, we know that the approximation
errors ∆xi are independent normally distributed with zero
mean and known standard deviations σi; see, e.g., [14].

In this case, we can use known statistical techniques to
estimate the resulting uncertainty ∆y in y. For example,
since we know the probability distributions, we can simulate
them in the computer, i.e., use the Monte-Carlo simulation
techniques to get a sample population ∆y(1), . . . ,∆y(N) of the
corresponding errors ∆y. Based on this sample, we can then
estimate the desired statistical characteristics of the desired
approximation error ∆y.

III. PROPAGATION OF INTERVAL UNCERTAINTY

In many other practical situations, we do not know these
probabilities, we only know the upper bounds ∆i on the
(absolute values of) the corresponding measurement errors
∆xi: |∆xi| ≤ ∆.

In this case, based on the known approximation x̃i, we
can conclude that the actual (unknown) value of i-th auxiliary
quantity xi can take any value from the interval

xi = [x̃i − ∆i, x̃i + ∆i].

To find the resulting uncertainty in y, we must therefore find
the range y = [y, y] of possible values of y when xi ∈ xi:

y = f(x1, . . . ,xn) def=

{f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.
Computations of this range under interval uncertainty is called
interval computations; see, e.g., [3], [4].

The corresponding computational problems are, in general,
NP-hard [8]. Crudely speaking, this means that, in general,
such problems require a large amount of computation time –
and that therefore faster methods are needed.

IV. PROPAGATION OF FUZZY UNCERTAINTY

In many practical situations, the estimates x̃i come from
experts. Experts often describe the inaccuracy of their esti-
mates in terms of imprecise words from natural language, such
as “approximately 0.1”, etc. A natural way to formalize such
words is to use special techniques developed for formalizing
this type of estimates – specifically, the technique of fuzzy
logic; see, e.g., [5], [11].

In this technique, for each possible value of xi ∈ xi, we
describe the degree µi(xi) to which this value is possible. For
each degree of certainty α, we can determine the set of values
of xi that are possible with at least this degree of certainty –
the α-cut xi(α) = {x |µ(x) ≥ α} of the original fuzzy set.
Vice versa, if we know α-cuts for every α, then, for each object
x, we can determine the degree of possibility that x belongs
to the original fuzzy set [2], [5], [9], [10], [11]. A fuzzy set
can be thus viewed as a nested family of its (interval) α-cuts.

We already know how to propagate interval uncertainty.
Thus, to propagate this fuzzy uncertainty, we can therefore
consider, for each α, the fuzzy set y with the α-cuts

y(α) = f(x1(α), . . . ,x1(α));

see, e.g., [2], [5], [9], [10], [11]. So, from the computational
viewpoint, the problem of propagating fuzzy uncertainty can
be reduced to several interval propagation problems.

V. NEED FOR FASTER ALGORITHMS FOR UNCERTAINTY

PROPAGATION

Summarizing the above analysis, we can conclude that in
principle, we need to consider three possible types of uncer-
tainty propagation: situations when we propagate probabilistic,
interval, and fuzzy uncertainty.

For probabilistic uncertainty, there exist reasonable efficient
uncertainty propagation algorithms such as Monte-Carlo sim-
ulations. In contrast, the problems of propagating interval and
fuzzy uncertainty are, in general, computationally difficult. It is
therefore desirable to design faster algorithms for propagating
interval and fuzzy uncertainty.

The computational problem of propagating fuzzy uncer-
tainty can be naturally reduced to the problem of propagating
interval uncertainty. Because of this reduction, in the following
text, we will mainly concentrate on faster algorithms for
propagating interval uncertainty. Applications of the above
algorithms to different structural integrity problems are de-
scribed in [12], [13].

VI. TWO SITUATIONS

In this paper, we describe faster algorithms for two practi-
cally important situations:

• linearization situations, when the approximation errors
are small and therefore, the data processing algorithms
can be replaced by a linear function, and

• monotonic situations, when the dependence of the result
y of data processing on each of the inputs x1, . . . , xn

is either monotonically increasing or monotonically de-
creasing.

VII. LINEARIZATION SITUATIONS: DESCRIPTION

Due to the approximation errors ∆xi = x̃i − xi, the
unknown (actual) values xi = x̃i−∆xi of the input quantities
xi are, in general, different from the approximate estimates
x̃i. In many practical situations, the approximation errors ∆xi

are small – e.g., when the approximations are obtained by
reasonably accurate measurements. In such situations, we can
ignore terms which are quadratic (and of higher order) in ∆xi.

VIII. LINEARIZATION SITUATIONS: ANALYSIS

In the above situations, we can expand the expression for

∆y = ỹ − y = f(x̃1, . . . , x̃n) − f(x1, . . . , xn) =

f(x̃1, . . . , x̃n) − f(x̃1 − ∆x1, . . . , x̃n − ∆xn)

in Taylor series in ∆xi and keep only the linear terms in this
expansion. In this case, we get

∆y = c1 · ∆x1 + . . . + cn · ∆xn,

where we denoted

ci
def=

∂f

∂xi
(x̃1, . . . , x̃n).

For a linear function, the largest possible value of ∆y is
obtained when each of the variables ∆xi ∈ [−∆i,∆i] attains:

• either its largest value ∆i (when ci ≥ 0)
• or its smallest value −∆i (when ci < 0).

In both cases, the largest possible value of the corresponding
term in ∆y is equal to |ci|·∆i. Thus, the largest possible value
of ∆y is equal to

∆ = |c1| · ∆1 + . . . + |cn| · ∆n.

Similarly, the smallest possible value of ∆y is obtained when
each of the variables ∆xi ∈ [−∆i,∆i] attains

• either its smallest value −∆i (when ci ≥ 0)
• or its largest value ∆i (when ci < 0).

In both cases, the smallest possible value of the corresponding
term in ∆y is equal to −|ci| ·∆i. Thus, the smallest possible
value of ∆y is equal to

−∆ = −|c1| · ∆1 − . . . − |cn| · ∆n.

Can can we transform these natural formulas into an algo-
rithm? Due to the linearization assumption, we can estimate
each partial derivative ci as

ci ≈ f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n) − ỹ

hi

for some small values hi. So, we arrive at the following
algorithm.

IX. LINEARIZATION SITUATIONS: ALGORITHM

To compute the range y of y, we do the following.
• First, we apply the algorithm f to the original estimates

x̃1, . . . , x̃n, resulting in the value ỹ = f(x̃1, . . . , x̃n).
• Second, for all i from 1 to n, we compute

f(x̃1, . . . , x̃i−1, x̃i +hi, x̃i+1, . . . , x̃n) for some small hi

and then compute

ci =
f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n) − ỹ

hi
.

• Finally, we compute

∆ = |c1| · ∆1 + . . . + |cn| · ∆n

and the desired range y = [ỹ − ∆, ỹ + ∆].

X. LINEARIZATION SITUATIONS: COMPUTATIONAL

COMPLEXITY

The main computation time is spent on calling the time-
consuming algorithm f . In the above uncertainty propagation
algorithm, after one call to f to compute ỹ, we need n calls
to f to compute the corresponding partial derivatives ci and
then, we can estimate the desired uncertainty ∆ in y by using
the above simple formula.

Overall, we thus need n + 1 calls to the algorithm f .

Comment. For large n, we can further reduce the number of
calls to f if we use a special technique of Cauchy-based
Monte-Carlo simulations, which enables us to use a fixed
number of calls to f (≈ 200) for all possible values n; see,
e.g., [6], [7].

XI. MONOTONIC SITUATION WITH KNOWN DIRECTIONS OF

MONOTONICITY: DESCRIPTION

In the previous case, we considered situations in which we
can safely ignore terms which are quadratic and of higher
order in ∆xi and in which, therefore, the actual dependence
y = f(x1, . . . , xn) can be safely approximated by a linear

function ∆y =
n∑

i=1

ci · ∆xi.

In many practical situations – especially in situations related
to expert (fuzzy) estimates when approximation errors may not
be small – we can no longer ignore quadratic and higher order
terms in ∆xi, so we must consider approximating functions
which are more general than the linear ones.

A natural more general class of functions comes from
the fact that linear functions are monotonic in each of their
variables ∆xi. This class is general enough, since in the

generic case, all partial derivatives
∂f

∂xi
are non-zeros at the

point x̃
def= (x̃1, . . . , x̃n). Hence, these derivatives are also

different from 0 in some vicinity of this point – and thus,
in this vicinity, the derivatives retain their signs and thus, the
function f is monotonic with respect to each of these variables.

In practice, we are indeed often sure that the dependence
is monotonic. For example, the Ohm’s law y = f(x1, x2) =
x1 · x2 is not a linear function of its two variables, but it is
monotonic for x1, x2 ≥ 0.

XII. MONOTONIC SITUATION WITH KNOWN DIRECTIONS

OF MONOTONICITY: ANALYSIS

For a monotonic function f(x1, . . . , xn), the largest possible
value over the intervals [x̃i − ∆i, x̃i + ∆i] is attained when:

• the variables xi w.r.t. which the function f is increasing
attain their largest possible values x̃i + ∆i, and

• the variables xi w.r.t. which the function f is decreasing
attain their smallest possible values x̃i − ∆i.

In other words, if we denote, for each input xi, the “mono-
tonicity sign” εi as εi = 1 if f is increasing in xi and εi = −1
if f is decreasing in xi, then the largest possible value y of
y = f(x1, . . . , xn) is attained when xi = x̃i + εi · ∆i for all
i, i.e.,

y = f(x̃1 + ε1 · ∆1, . . . , x̃n + εn · ∆n).

Similarly, the smallest possible value y of y = f(x1, . . . , xn)
is attained when xi = x̃i − εi · ∆i for all i, i.e.,

y = f(x̃1 − ε1 · ∆1, . . . , x̃n − εn · ∆n).

So, if we know with respect to which variables xi it is increas-
ing and with respect to which variables xj this dependence is
decreasing, then we can find the desired range [y, y] of possible
values of y by using the following algorithm.

XIII. MONOTONIC SITUATION WITH KNOWN DIRECTIONS

OF MONOTONICITY: ALGORITHM

• First, we compute y as

y = f(x̃1 − ε1 · ∆1, . . . , x̃n − εn · ∆n).

• Then, we compute y as

y = f(x̃1 + ε1 · ∆1, . . . , x̃n + εn · ∆n).

The resulting range of possible values of y is [y, y].

XIV. MONOTONIC SITUATION WITH KNOWN DIRECTIONS

OF MONOTONICITY: COMPUTATIONAL COMPLEXITY

The above algorithm requires two calls to f .

XV. GENERAL MONOTONIC SITUATION (WITH UNKNOWN

DIRECTIONS OF MONOTONICITY): DESCRIPTION

In more complex situations, when the function
f(x1, . . . , xn) is not an explicit expression but rather a
complex algorithm, we may still know that the dependence
is monotonic, but we do not know a priori with respect to
which variables the dependence is increasing and with respect
to which the dependence is decreasing.

XVI. GENERAL MONOTONIC SITUATION: ANALYSIS

In this case, for each i, we can find the corresponding
direction of monotonicity εi by changing the value of the i-
th input and tracing how this change will affect the resulting
value f :

εi = sign(f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n) − ỹ)

for some small value hi > 0; see, e.g., [6], [12], [13] and
references therein. Thus, we arrive at the following algorithm.

XVII. GENERAL MONOTONIC SITUATION: ALGORITHM

• First, we compute ỹ = f(x̃1, . . . , x̃n).
• Second, for all i from 1 to n, we compute

f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n) for some small
value hi > 0 and then find

εi = sign(f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n) − ỹ).

• Finally, we compute the range [y, y] by using the formulas

y = f(x̃1 − ε1 · ∆1, . . . , x̃n − εn · ∆n);

y = f(x̃1 + ε1 · ∆1, . . . , x̃n + εn · ∆n).

XVIII. GENERAL MONOTONIC SITUATION:
COMPUTATIONAL COMPLEXITY

In this case, in addition to the original call to f for
computing ỹ = f(x̃1, . . . , x̃n), we need n calls to find n signs
εi, and then 2 more calls to compute y and y. Overall, we thus
need n + 3 calls to f .

XIX. SITUATION WHEN THE ALGORITHM f(x1, . . . , xn) IS

A SOLUTION TO A SYSTEM OF EQUATIONS: DESCRIPTION

We have mentioned that in many cases, the complex algo-
rithm f(x1, . . . , xn) comes from the need to solve a difficult-
to-solve non-linear system of equations. In such situations,
the desired quantity y is one of several unknowns y1 = y, y2,
. . . , ym which are related to the easier-to-estimate values by
a system of non-linear equations

F1(x1, . . . , xn, y1, . . . , ym) = 0;

. . .

Fm(x1, . . . , xn, y1, . . . , ym) = 0.

Often, the functions F1, . . . , Fm are reasonably easy to com-
pute, it is the solution which requires a large amount of time.

We start with the values ỹ1, . . . , ỹm which correspond to
the (approximate) estimated values x̃1, . . . , x̃n of the inputs.
For these values, the following system of equations holds:

F1(x̃1, . . . , x̃n, ỹ1, . . . , ỹm) = 0;

. . .

Fm(x̃1, . . . , x̃n, ỹ1, . . . , ỹm) = 0.

We want to know how the uncertainty ∆xi in the inputs affects
the uncertainty ∆yj in the outputs, i.e., how the inputs ∆xi

affect the values ∆yj for which

F1(x̃1 −∆x1, . . . , x̃n −∆xn, ỹ1 −∆y1, . . . , ỹm −∆ym) = 0;

. . .

Fm(x̃1−∆x1, . . . , x̃n−∆xn, ỹ1−∆y1, . . . , ỹm−∆ym) = 0.

In this case, e.g., the above linearization algorithm means
that we need to call f n + 1 times means that we need to
solve difficult-to-solve non-linear system of equations n + 3
times. A natural question is: can we estimate the range [y, y]

faster, without actually having to solve that many systems of
non-linear equations?

In this paper, we will show that such a speed-up is indeed
possible. Preliminary speed-up results were described in [12],
[13].

XX. SYSTEMS OF EQUATIONS, LINEARIZATION CASE:
ANALYSIS

First, we will consider the case when the functions Fk can
be safely linearized, i.e., when the terms quadratic in ∆xi and
in ∆yj can be safely ignored. In this case, the above equations
lead to

n∑
i=1

Xki · ∆xi +
m∑

j=1

Ykj · ∆yj = 0,

where we denoted

Xki
def=

∂Fk

∂xi
, Ykj

def=
∂Fk

∂yj
.

Since the functions Fk are easy-to-compute, the computa-
tion of these partial derivatives does not require the time-
consuming step of actually solving the non-linear system of
equations. The above equations can be described in a matrix
form: X∆x = −Y ∆y. Thus, we can find the vector ∆y as
∆y = −Y −1X∆x, i.e., as ∆y = −M∆x, where the matrix
M with elements mji has the form M = Y −1X .

In this case,

∆yj =
n∑

i=1

mji · ∆xi.

In particular, for the desired quantity y = y1, we get

∆y1 =
n∑

i=1

m1i · ∆xi,

and thus, the interval of possible values of ∆y is [−∆,∆],
where

∆ =
n∑

i=1

|m1i| · ∆i.

Thus, we arrive at the following algorithm.

XXI. SYSTEMS OF EQUATIONS, LINEARIZATION CASE:
ALGORITHM

• First, we use the estimates x̃1, . . . , x̃n to solve the original
system of non-linear equations

F1(x̃1, . . . , x̃n, ỹ1, . . . , ỹm) = 0;

. . .

Fm(x̃1, . . . , x̃n, ỹ1, . . . , ỹm) = 0;

and find the values ỹ1 = ỹ, ỹ2 . . . , ỹm.
• Then, we compute the derivative matrices with elements

Xki
def=

∂Fk

∂xi
, Ykj

def=
∂Fk

∂yj
,

by either analytically differentiating or by using numeri-
cal differentiation.

• Third, we compute the matrix M = Y −1X with elements
mji, the bound

∆ =
n∑

i=1

|m1i| · ∆i,

and the desired range [ỹ − ∆, ỹ + ∆].

XXII. SYSTEMS OF EQUATIONS, LINEARIZATION CASE:
COMPUTATIONAL COMPLEXITY

According to the above algorithm, we can compute the
desired bound ∆ by solving the original system of non-linear
equations only once: to find the original values ỹj .

Comment. This is clearly much faster than solving this system
n + 1 times. There is a computational advantage of using this
technique even if the original system of equations is linear:
in this case, instead of solving the system of equations n + 1
times, we compute the inverse matrix once. It is known that
asymptotically, the computation time needed to invert a matrix
A is the same as the time needed to solve a general linear
equation Ax = b (see, e.g., [1]), so this idea indeed leads to
a drastic decrease in computation time.

XXIII. SYSTEM OF EQUATIONS, MONOTONIC CASE:
ANALYSIS

If we know that the dependence of y on each xi is
monotonic, but we do not know the direction of monotonicity,
then we can find this direction by computing the sign εi of
the partial derivative

m1i =
∂y1

∂xi
:

εi = sign(m1i). Similarly to the linearized case, we can

conclude that the matrix M with elements mki =
∂yk

∂xi
can be

computed as M = Y −1X . Computing the partial derivatives
X and Y does not require solving any system of non-linear
equations. Thus, we arrive at the following algorithm.

XXIV. SYSTEM OF EQUATIONS, MONOTONIC CASE:
ALGORITHM

• First, we use the estimates x̃1, . . . , x̃n to solve the original
system of non-linear equations

F1(x̃1, . . . , x̃n, ỹ1, . . . , ỹm) = 0;

. . .

Fm(x̃1, . . . , x̃n, ỹ1, . . . , ỹm) = 0;

and find the values ỹ1 = ỹ, ỹ2 . . . , ỹm.
• Then, we compute the derivative matrices with elements

Xki
def=

∂Fk

∂xi
, Ykj

def=
∂Fk

∂yj
,

by either analytically differentiating or by using numeri-
cal differentiation.

• Third, we compute the matrix M = Y −1X with elements
mji, and the signs εi = sign(m1i).

• To find y, we solve the system

F1(x̃1 − ε1 · ∆1, . . . , x̃n − εn · ∆n, y1, . . . , ym) = 0;

. . .

Fm(x̃1 − ε1 · ∆1, . . . , x̃n − εn · ∆n, y1, . . . , ym) = 0;

and take y = y1.
• To find y, we solve the system

F1(x̃1 + ε1 · ∆1, . . . , x̃n + εn · ∆n, y1, . . . , ym) = 0;

. . .

Fm(x̃1 + ε1 · ∆1, . . . , x̃n + εn · ∆n, y1, . . . , ym) = 0;

and take y = y1. The desired range is now [y, y].

XXV. SYSTEM OF EQUATIONS, MONOTONIC CASE:
COMPUTATIONAL COMPLEXITY

Thus, in the monotonic case, we can find the range of y by
solving only 3 systems:

• first, we solve the system corresponding to the original
estimates x̃i and to find the original values ỹj ; after this,
we compute X , Y , M , and εi;

• second, we solve the system corresponding to the values
xi = x̃i + εi ·∆i and thus, compute y as the correspond-
ing y1;

• finally, we solve the system corresponding to the values
xi = x̃i − εi ·∆i and thus, compute y as the correspond-
ing y1.

Solving 3 systems takes longer than solving a single system
(as in the linearized case), but it is much faster than solving
n + 3 systems according to the general monotonicity case.

XXVI. CASE OF UNKNOWN FUNCTIONAL VARIABLES

In some practical situations, instead of the values x1, . . . , xn

known with interval uncertainty, we have a function x(t)
known with interval uncertainty, i.e., we know the approx-
imate function x̃(t) and we know the bounds ∆(t) on the
approximation error. In other words, we know that for each
t, the (unknown) actual value x(t) belongs to the interval
[x̃(t) − ∆(t), x̃(t) + ∆(t)].

The desired value y is related to the function y by a known
functional dependence y = F (x): e.g., we may have

y = y0 +
∫

a(t) · x(t) dt,

or

y = y0 +
∫

a(t) · x(t) dt +
∫

a(t, s) · x(t) · x(s) dt ds.

In general, we have ỹ = F (x̃) and y = F (x) = F (x̃ − ∆x),
where ∆x(t) def= x̃(t) − x(t).

When the approximation errors ∆x(t) are small, we can
expand the dependence y = F (x̃ − ∆x) or ∆x in Taylor
series and ignore quadratic and higher order terms in this
dependence. In this case, we conclude that

∆y =
∫

δy

δx(t)
· ∆x(t) dt,

where
δy

δx(t)
is a functional derivative. For example,

• For a linear functional y = y0+
∫

a(t)·(x̃(t)−∆x(t)) dt,

we have
δy

δx(t)
= a(t).

• For a quadratic functional

y = y0 +
∫

a(t) · (x̃(t) − ∆x(t)) dt+

∫
a(t, s) · (x̃(t) − ∆x(t)) · (x̃(s) − ∆x(s)) dt ds =

(
y0 +

∫
a(t) · x̃(t) dt +

∫
a(t, s) · x̃(t) · x̃(s) dt ds

)
−

∫
a(t) · ∆x(t)) dt − 2

∫
a(t, s) · x̃(s) · ∆x(t) dt ds,

we have
δy

δx(t)
= a(t) + 2

∫
a(t, s) · x̃(s) ds.

In this case, the largest possible value ∆ of ∆t is attained
when

• ∆x(t) = ∆(t) for all t with
δy

δx(t)
≥ 0, and

• ∆x(t) = −∆(t) for all t with
δy

δx(t)
< 0.

In other words, the range of possible values of y is

[ỹ − ∆, ỹ + ∆], where ∆ =
∫ ∣∣∣∣ δy

δx(t)

∣∣∣∣ · ∆(t) dt.

XXVII. CASE OF UNCERTAIN BOUNDARY

In some practical problems, e.g., in many problems related
to structural integrity, the desired quantity y is related to the
solution u of a linear partial differential equation Lu = f with
a known right-hand side f and boundary conditions such as
u|∂Ω = 0.

In numerical mathematics, it is usually assumed that we
know the domain Ω and its boundary ∂Ω. However, in practice,
we often only know the boundary ∂Ω with uncertainty. How
does this uncertainty affect the solution u to the corresponding
partial differential equation?

In this paper, we will consider this effect only for the
linearized case, when the uncertainty in ∂Ω is small, and we
can safely ignore terms which are quadratic and of higher
order in terms of this uncertainty.

Our main idea is to transform the boundary condition corre-
sponding into the actual (unknown) domain Ω to the boundary
condition corresponding to the nominal (approximate) domain
Ω̃. Let ũ be the solution corresponding to Ω̃. We are interested
in the difference ∆u = ũ−u. For each point y ∈ ∂Ω̃, let ρ(y)
denote the distance from this point to the nearest point on
the boundary ∂Ω. In these terms, the closeness between the
sets means, e.g., that we have an upper bound ∆Ω(y) on this
distance.

Let us describe this closest point. Let ε(y) = 1 if the nearest
point is outside Ω̃ and ε(y) = −1 if the nearest point is inside
Ω̃. Let �n be a unit vector orthogonal to ∂Ω̃ and directed outside
Ω̃. Then, in the linear approximation, the closest point is equal

to y + ε(y) · ρ(y) · �n, and the value of u at this closest point

is equal to u(y + ε(y) · ρ(y) ·�n) = u(y)+ ε(y) · ρ(y) · du

dn
. By

definition, u(y) = ũ(y)+∆u(y). For y ∈ δΩ̃, we have ũ(y) =

0, and in the term proportional to
du

dn
, the part proportional to

∆u can be ignored. As a result, we get the boundary condition

∆u|δΩ̃ = g, where g(y) def= ε(y) · ρ(y) · dũ

dn
(y).

Since L is a linear operator, from Lu = f and Lũ = f ,
we conclude that L∆u = 0. In general, the solution to a
linear problem Lv = 0, v|δΩ̃ = g is linear in g, i.e., v(x) =∫

a(x, y) · g(y) dy for some function a(x, y). Substituting the
above expression for g(y) into this formula, and taking into
account that ρ(y) ≤ ∆Ω(y), we conclude that for every x, we
have

|∆u(x)| ≤ ∆u(x) def=
∫

|a(x, y)| · ∆Ω(y) ·
∣∣∣∣dũ

dn
(y)

∣∣∣∣ dy.

Comments. If we have uncertainty both in f and in Ω, then
we can simply add the resulting bounds on ∆u(x).

A similar idea can be also applied to the case of non-
linear equations L, the only difference is that we will need
to linearize the operator L.

ACKNOWLEDGMENTS

The authors are thankful to the anonymous referees for
valuable discussions.

REFERENCES

[1] Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, MIT Press, Cambridge, MA, 2001.

[2] D. Dubois and H. Prade, Operations on fuzzy numbers, International
Journal of Systems Science, 1978, Vol. 9, pp. 613–626.

[3] Interval computations website http://www.cs.utep.edu/interval-comp
[4] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis,

with Examples in Parameter and State Estimation, Robust Control and
Robotics, Springer-Verlag, London, 2001.

[5] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic, Prentice Hall, New
Jersey, 1995.

[6] V. Kreinovich, J. Beck, C. Ferregut, A. Sanchez, G. R. Keller, M. Averill,
and S. A. Starks, “Monte-Carlo-type techniques for processing interval
uncertainty, and their potential engineering applications”, Reliable Com-
puting, 2007, Vol. 13, No. 1, pp. 25–69.

[7] V. Kreinovich and S. Ferson, “A New Cauchy-Based Black-Box Tech-
nique for Uncertainty in Risk Analysis”, Reliability Engineering and
Systems Safety, 2004, Vol. 85, No. 1–3, pp. 267–279.

[8] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational
complexity and feasibility of data processing and interval computations,
Kluwer, Dordrecht, 1998.

[9] R. E. Moore and W. Lodwick, Interval Analysis and Fuzzy Set Theory,
Fuzzy Sets and Systems, 2003, Vol. 135, No. 1, pp. 5–9.

[10] H. T. Nguyen and V. Kreinovich, Nested Intervals and Sets: Concepts,
Relations to Fuzzy Sets, and Applications, In: R. B. Kearfott and
V. Kreinovich, eds., Applications of Interval Computations, Kluwer,
Dordrecht, 1996, pp. 245–290.

[11] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, CRC
Press, Boca Raton, Florida, 2006.

[12] A. Pownuk, “General Interval FEM Program Based on Sensitivity
Analysis”, Proceedings of the NSF workshop on Reliable Engineering
Computing, Savannah, Georgia, February 20–22, 2008.

[13] M. V. Rama Rao, A. Pownuk, and I. Skalna, “Stress Analysis of a Singly
Reinforced Concrete Beam with Uncertain Structural Parameters”, Pro-
ceedings of the NSF workshop on Reliable Engineering Computing,
Savannah, Georgia, February 20–22, 2008.

[14] S. Rabinovich, Measurement Errors and Uncertainties: Theory and
Practice, American Institute of Physics, New York, NY, 2005.

