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One of the simplest ways of representation of uncertain or inexact data, as well as inexact computations with 
them, is based on interval arithmetic. In this approach, an uncertain (real) number is represented by an interval (a 
continuous bounded subset) of real numbers which presumably contains the unknown exact value of the number in 
question. Despite its simplicity, it conforms very well to many practical situations, like tolerance handling or 
managing rounding errors in numerical computations. Also, the so-called α-cut method of handling fuzzy sets 
membership functions is based on replacing a fuzzy set problem with a set of interval problems.  

The purpose of this paper is to investigate possibilities of and problems with application of interval methods in 
(qualitative) analysis of linear mechanical systems with parameter uncertainties, in particular truss structures and 
frames. The paper starts with an introduction to interval arithmetic and systems of linear interval equations, 
including an overview of basic methods for finding interval estimates for the set of solutions of such systems. The 
methods are further illustrated by several examples of practical problems, solved by our hybrid system of analysis of 
mechanical structures. Finally, several general problems with using interval methods for analysis of such linear 
systems are identified, with promising avenues for further research indicated as a result. The problems discussed 
include estimation inaccuracy of the algorithms (especially the fundamental problem of matrix coefficient 
dependence), their computational complexity, as well as inadequate development of methods for analysis of interval 
systems with singular matrices. 

1. INTRODUCTION 

Qualitative analysis is an area of AI research attempting to model the everyday, qualitative, non-
numerical reasoning humans use to estimate the range of possible solutions to some real-world problems, 
especially in the case of inexact or incomplete data  [6, 7, 11, 13]. Among many problems considered in 
this field is the problem of representing, more or less qualitatively, uncertain or inexact data. One of the 
simplest ways of representation of such data, as well as inexact computations on them, is based on the 
so-called interval arithmetic [1, 19], called also interval analysis. In this approach, an uncertain (real) 
number is represented by an interval (a continuous bounded subset) of real numbers which presumably 
contains the unknown exact value of the number in question. Thus, the uncertainty is bounded by the size 
of the interval; in addition, no commitment to a particular probability distribution (or its estimate) of the 
of various alternative values within the interval needs to be made. This model is thus in principle much 
simpler than general probabilistic or fuzzy set formulations of uncertainty. Despite its simplicity, it 
conforms very well to many practical situations, like tolerance handling in mechanics or managing 
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rounding errors in numerical computations. Hence the number of applications of interval-based numerical 
methods is growing steadily. 

Also, the so recently popular fuzzy set approach uses more and more often the interval arithmetic 
formulations and methods. First, intervals can be considered as a special kind of fuzzy set membership 
function (a “square-wave” membership function). Second, the so-called α-cut approach [3] to handling of 
membership function shapes is based on replacing a fuzzy set problem with a set of interval problems: 
every interval problem is obtained by thresholding the original fuzzy set membership function at some 
value α of the function, 0€≤€ α€≤€ 1. It is thus not surprising (though possibly a little annoying for 
interval analysis researchers) that quite often a paper devoted, according to its title, to fuzzy set methods 
may deal mostly with interval analysis inside [23, 34].  

As far as the authors know, the first work on interval arithmetic appeared in 1956 in a Polish 
mathematical journal, authored by Warmus [35]. It contained most of the basic notions and definitions for 
interval arithmetic, including some its extensions (the one now known as “Kaucher arithmetic”, see the 
footnote in Sec. 2.1). The field reached a sort of maturity in middle sixties with the publication by Moore 
[19] of the first book on the subject. Another basic textbook appeared in 1974 (in German; an English 
translation, revised and expanded, appeared in 1983 [1]). Since then, most applications of interval 
analysis concerned the problem of assuring reliable computations in the presence of rounding errors in 
computer arithmetic1); recently they also found significant applications in the field of optimisation [8]. 
Basic interval arithmetic techniques used for solving systems of linear and non-linear equations are 
covered in [20]. Experiences with application of interval methods to analysis of some mechanical systems 
have been reported in several papers, among others [12, 23, 25, 34]. 

The purpose of the work described in this paper was to investigate possibilities of and problems with 
application of interval methods in (qualitative) analysis of linear mechanical systems with parameter 
uncertainties, in particular truss structures and frames. The paper starts with an introduction to interval 
arithmetic and systems of linear interval equations. Then follows an overview of basic methods for 
finding interval estimates for the set of solutions of such systems. It includes methods giving exact 
estimates (though computationally inefficient) as well as faster methods producing approximate 
estimates. The usefulness of the methods for practical problems is further evaluated on several examples 
of solving linear mechanical problems with uncertain parameters (trusses and frames), as implemented in 
our hybrid system of analysis of mechanical structures [16, 17]. Finally, several general problems with 
using interval methods for analysis of such linear systems are identified. Most of all, the estimation 
inaccuracy of the algorithms, especially due to the problem of matrix coefficient dependence (in turn the 
result of certain fundamental algebraical weaknesses of the interval arithmetic), are discussed in some 
detail. The problems of computational complexity of the algorithms as well as inadequate development of 
methods for analysis of singular interval systems are also discussed. The discussion leads to formulation 
of several urgent and promising avenues for further research. 
2. INTERVAL ARITHMETIC: BASIC NOTIONS 

The interval notation used in the paper follows basically that of Neumaier [20], with minor modifications 
and some additions. Modifications consist mostly of using an operator instead of functional notation for 
certain basic interval functions in order to minimise the number of superfluous parentheses in formulas, 
as well as using boldface font for vectors and matrices, as is customary in computational mechanics 
circles. 

2.1. Real intervals 

In general, an interval is defined as a pair of elements of some (at least partially) ordered set [14, 15]. For 
our purposes here, and in accord with standard treatment of intervals in interval arithmetic [1, 20], we 
                                                      
1)  Spectacular examples of such errors are described e.g. in [8, 31]. The two recent technical disasters caused by 

computer arithmetic errors are the Patriot missile failure in Dharan, Saudi Arabia, in 1991, and the explosion 
during launch of the Ariane 5 rocket in Kourou, French Guyana, in 1996 (see  
http://www.math.psu.edu/dna/455.f96/disasters.html). 
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shall identify an interval with the set of elements lying between the interval endpoints (including the 
endpoints, hence all intervals are closed sets), and using the set of real numbers as the underlying ordered 
set (hence restricting ourselves to so-called real intervals). Thus, a (proper) real interval x is a subset of 
the set of real numbers R such that: 

x x x x x x x= = ∈ ≤ ≤[ , ] {~ ~ },R  
where x x x x x x≤ = =and sup , inf are endpoints of the interval x. In general, by ~x  we shall 
denote any element of the interval x. The set of all such intervals is denoted by IR and called a (real) 
interval space2) . The interval is called thick if x x< ; thin (or point) interval if x x= . Thin intervals for 
most purposes can be identified with corresponding real numbers. 

For a real interval x the midpoint, radius, magnitude (or absolute value) and mignitude of the interval 
are defined, respectively, as follows: 

Ix x x x
x x x

x x x x

x x x x x x

= = +
= −

= =

= = ∉ =

mid
rad

mag

mig if otherwise.

( ) ,
( ) ,

max( , ),

min( , ) ,

2
2

0 0

 

Often it is convenient to consider also the width of an interval, defined as: 

wid radx x x x= − = 2 . 

Since x x x x x= − +[ , ]� �rad rad , intervals can be also expressed in terms of the midpoint and 
radius (instead of endpoints)—a so-called centered formulation (first introduced by Warmus [35], see 
also the centered diagrammatic representation for a space of intervals in [14, 15]).  

As intervals are considered here to be sets of reals (or of n-tuples of reals, see below), a set-theoretic 
operations and relations on intervals can be used, in particular: 

{ }x y x x x x y
x y y x

x y x y

x y y x x y

∩ = ∈ ∈ ∧ ∈ =
∅ < <





⊆ ⇔ ≤ ∧ ≤

~ ~ ~ ,

[max( , ), min( , )]  otherw

.

R
    if   or  

ise.  

Also, the notions of interior and boundary of an interval are sometimes useful. For thick intervals they 
are defined as: 

int x = {~ ~ },x x x x∈ < <R  
∂x ={ , }.x x  

For thin intervals, in a somewhat non-standard way, interior and boundary are identified with the number 
x itself, so that  int [x, x] = ∂[x, x] = x. 

Operations and functions on reals are naturally extended to interval operands according to the general 
formula: 

{ }
{ }

x y x y x x y y

x x x x x x i n x xn n i i

op op= ∈ ∈

= ∀ = ∈

~ ~ ~ & ~ ,

f( , , . . . , ) f(~ , ~ , .. . , ~ ) ( , , . . . , ) ~ .1 2 1 2 1 2
 (1) 

For many operations, including standard arithmetic operations of addition, subtraction, multiplication and 
division, the resulting set is also an interval that can be conveniently defined in terms of endpoints of the 
argument intervals: 
                                                      
2)  Extensions of interval arithmetic that allow improper intervals (for which x x> ) are also considered and used in 

practical applications (two main such extensions are called Kaucher and Kahan arithmetic, respectively, see e.g. 
[1, 18, 32]), but they will not be discussed here in detail. 
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x y x y x y
x y x y x y
x y x y x y xy x y x y x y xy x y

+ = + +

− = − −

⋅ =

[ , ],

[ , ],

[min( , , , ), max( , , , )],

 (2) 

x y x y y y/ [ / , / ]= ⋅ ∉1 1 0if , undefined otherwise3) . 

As can be seen from the definitions, subtraction and division of real intervals are not the inverse 
operations to addition and multiplication, respectively, differently than for the corresponding operations 
on reals. Other differences exist, most notably the distributive law a (b + c) = ab + ac does not hold in 
general in interval arithmetic. Instead, we have the weaker subdistributive law: 

x (y + z) ⊆  xy + xz,  for x, y, z ∈  IR. (3) 
These properties of interval arithmetic lead to problems with proper transformation and calculation of 
numerical values for interval expressions. One should exercise proper caution with applying the usual 
arithmetic rules and formulas like Eq. (2) to interval expressions; for correct result, the conclusive rule is 
always that of Eq. (1). The problem is further discussed in detail in Sec. 5.2. 

Fortunately, due to another important property of arithmetic operations on intervals called inclusion 
isotonicity: 

x ⊆  y & u ⊆  v  ⇒  x op u  ⊆   y op v,  for x, y, u, v ∈  IR (if  y op v  is defined), (4) 
the result of a straightforward calculation of interval expression will always include the proper result (i.e., 
we get at most an overestimation of the proper resulting interval). 

For any bounded set of real numbers s we can define a smallest interval enclosure of the set, called 
also (interval) hull of the set: 

hull s = [inf s, sup s]. 
For instance, for a two-element set {a, b} of real numbers we have hull{a, b} = [min(a, b), max(a, b)]. 
Of course, if x is an interval, then  hull x = hull ∂x = x. 

When the application of Eq. (1) for some function or operation produces a set which is not an interval, 
the hull of the set can be taken if there is a need to stay within interval arithmetic all the time (which is 
usually the case). Hence, Eq. (1) is usually used in the form: 

{ }
{ }

x y x y x x y y

x x x x x x i n x xn n i i

op op= ∈ ∈

= ∀ = ∈

hull ~ ~ ~ & ~ ,

f( , , . . . , ) hu ll f(~ , ~ , .. . , ~ ) ( , , . . . , ) ~ .1 2 1 2 1 2
 (1′) 

It is easy to see that the inclusion isotonicity rule of Eq. (4) is still valid with this definition of interval 
operations. 

2.2. Interval vectors and matrices 

Vectors and matrices whose elements are intervals (possibly some of them thin) are called interval 
vectors and interval matrices, respectively. As vectors are, in a sense, special cases of matrices, most of 
the discussion concerning matrices in the sequel applies equally to vectors. 

Most operations on intervals can be extended to interval matrices, by applying them componentwise to 
all matrix elements. In particular, infimum, supremum, midpoint, radius, magnitude, intersection and 
inclusion, with corresponding notation, are so defined, as are addition and subtraction. Hence, an interval 
matrix A ∈  IRn×m can be also considered as a set of real matrices

~
A , i.e. we can write

~
A A∈  when 

A A A≤ ≤
~

, or as a matrix interval: A A A A A A A= = − +[ , ] [ rad , rad ]
I I

. Matrix multiplication 
is defined like for real matrices. Alternatively, Eq. (1′) should be used, since the set 

                                                      
3)  In Kahan arithmetic (see the previous footnote), division is always defined. 
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{
~ ~ ~

&
~

}AB A A B B∈ ∈  in general may not be an interval matrix. It is also important to remember that 
multiplication of interval matrices, (contrary to the non-interval matrices and scalar intervals), is not 
associative, thus in general A(BC) ≠ (AB)C, unless A and C are thin (i.e., real) matrices. 

The boundary of an interval matrix consists of 2t elements, where t is the number of thick interval 
elements of A, and is defined as: 

∂ ∂A A A A A= ∈ ∈ = ∈ = ∨ ={
~ ~ } {

~ ~ ~ }.a a a a a aij ij ij ij ij ij  (5) 

Obviously, A A A, ∈∂ . The interior is defined straightforwardly. 
Somewhat confusingly (following Neumaier [20]), we shall use the notation 〈A〉 not for a 

componentwise mignitude of A, but for a (real) matrix with coefficients defined by: 

〈A〉ii = 〈aii〉,  
〈A〉ik = – aik , for i ≠ k. 

Such defined matrix (called a comparison matrix) has important uses in analysis of linear systems of 
equations, both real and interval. Also, the so called M-matrices and H-matrices are of importance here:  
•  A square matrix A ∈  IRn×n is an M-matrix when aik ≤ 0 for all i ≠ k, and Au > 0 for some positive 

vector u ∈  Rn.  
•  An H-matrix is a matrix A whose comparison matrix 〈A〉 is an M-matrix, which is equivalent to the 

condition 〈A〉u > 0 for some positive vector u ∈  Rn.  
Every M-matrix is an H-matrix. 

For the given real positive (scaling) vector u ∈  Rn we also define the scaled maximum norm (or 
scaled row sum norm) of an interval matrix A ∈  IRn×n as follows: 

A u =
= =
max / .

,...,i n k

n
ik k ia u u

1 1
Σ  

For u = (1, 1, ..., 1)T this reduces to the standard maximal row sum norm A ∞ .  

A square interval matrix A ∈  IRn×n is called regular (or non-singular) if all real matrices 
~
A A∈  are 

regular (non-singular); otherwise it is called singular. H-matrices (hence M-matrices) are all regular. A 
matrix is called strongly regular if the so-called preconditioned matrix 

I

A A−1  is regular. There are 
several other equivalent conditions of strong regularity [20], e.g. that 

I

A A−1  is an H-matrix, or that 

ρ( )
I

A A− <1 1rad  (where ρ(A) is a spectral radius of A), or that I A A
u

− <−I 1 1  for some u > 0. 

An inverse A–1 of a regular interval matrix A is defined as: 

A–1 = hull {
~ ~

}A A A− ×∈ ∈1 R n n . 
It is important to note that usually the set of inverses of matrices belonging to A is not an interval matrix, 
hence taking of the hull in the above formula is in general necessary.  

If the matrix A is an M-matrix, or A A, are regular and A A− −1 1,  ≥ 0, we have simply A–1 = 

[ A A− −1 1, ] ≥ 0. Interval matrices which are regular and for which A–1 ≥ 0 are called inverse positive. 
M-matrices are inverse positive, but H-matrices in general are not. 

3. SYSTEMS OF LINEAR INTERVAL EQUATIONS 

Let us consider a linear interval system of equations with an interval coefficient matrix A ∈  IRn×n and 
an interval right-hand vector b ∈  IRn: 



 

6 Z. Kulpa, A. Pownuk and I. Skalna

Ax = b (6) 
The solution set of Eq. (6) is usually defined as: 

Σ(A, b) = {~ (
~

) (
~

)
~ ~ ~

}x A A b b Ax b∈ ∃ ∈ ∃ ∈ =R n . (7) 

It is sometimes called a united solution set and denoted by ∃∃∑ ( , )A b , as there are other possible 

definitions of solutions to Eq. (6), see e.g. [32, 33]. 

Usually the set Σ(A, b) is not an interval vector, and can be of quite complicated shape (in general, 
not necessarily convex, connected, or bounded). It is connected and bounded if the matrix A is regular. In 
this case, it constitutes an n-dimensional polyhedron which is a sum of at most 2n convex polyhedrons 

obtained as intersections of the set Σ(A, b) with every of the 2n orthants of the solution space Ox1... xn. 

The convex hull  conv Σ(A, b) of this set is a minimal convex polyhedron containing Σ(A, b); as can 
be easily seen, the vertices of the convex hull constitute a subset of vertices of the solution set. 

Another important and useful characterisation of the solution set, valid also for singular matrices A, 
was given by Oettli and Prager [22] (another proof of the formula was later given by Rohn [26]): 

Σ(A, b) = {~ ~ (rad ) ~ rad }x Ax b A x b∈ − ≤ +R n I I

. (8) 

Calculating (and representing) the solution set Σ(A, b) may be quite hard and impractical, especially 
for larger n. Therefore, for many practical purposes we are satisfied with the interval enclosure of the set. 
The smallest (tightest) enclosure is the hull of the set: 

hull Σ(A, b) = [inf Σ(A, b), sup Σ(A, b)]. 

Obviously, hull Σ(A, b) = hull conv Σ(A, b). This enclosure is also hard to calculate in general case 
(see the next section), hence a number of more effective algorithms producing less exact enclosures has 
been devised. Some of them are described and used in the sequel to solve certain linear mechanical 
problems. 

3.1. Finding the exact hull of the solution set 

There are several methods for obtaining the hull which is the exact (called also optimal) interval 

enclosure of the solution set Σ(A, b). However, it was proven that finding the hull is an inherently 
exponential complexity problem, see Sec. 5.1.2 for details. Fortunately, this is the worst-case behaviour—
for many practical problems some of the algorithms of this class exhibit much better performance [2, 26]. 

3.1.1. Enumerating combinations of endpoints of interval coefficients (CEIC) 

This method of calculating the hull, called also a combinatorial method [25], is very simple and easy to 
implement, hence often used as a reference algorithm during experiments with implementation and 
application of other, more intricate algorithms. 

The CEIC algorithm is based on the theorem by Hartfiel [9] which states (after reformulation into our 
notation) that for a regular interval matrix A: 

conv Σ(A, b) = conv Σ(∂A, ∂b),  
where: 

Σ(∂A, ∂b) = { ~x  ∈  Rn | (∃
~
E  ∈  ∂A) (∃ ~e  ∈  ∂b)

~ ~ ~Ex e= }.  (9) 
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Since for every S holds hull conv S = hull S, then hull Σ(A, b) = hull Σ(∂A, ∂b). That is, the method 
works by computing standard numerical solutions for all 2t = card ∂A ⋅ card ∂b real systems of 
equations for all combinations endpoints of the interval elements of the matrix A and vector b (where t = 
tA + tb is the number of thick interval coefficients in them), and returning the interval envelope of the 
resulting set of solutions.  

Obviously, the algorithm is of exponential complexity: in the worst case, when all intervals in A and b 
are thick, t = n2+n and the algorithm must solve 2n2+n linear systems of n equations, hence its practical 
value is small. However, when interval elements constitute a small fraction of the coefficients of the 
system (e.g., for sparse matrices or limited uncertainty in system parameters) it may become more useful 
than other algorithms of this type described in the subsequent sections. 

As Σ(∂A, ∂b) ⊂  Σ(A, b) and Σ(∂A, ∂b) contains all extremal points of the solution set Σ(A, b), a 
Monte-Carlo random sampling of the set Σ(∂A, ∂b) has good chances to show qualitatively the overall 
shape of the solution set Σ(A, b).  
3.1.2. The Rohn sign-accord algorithm (RSA) 

One way of improving the CEIC algorithm is to find a method to filter out as many as possible of those 

elements of ∂A and ∂b which do not lead to solutions occupying the extremal points of Σ(A, b). Such a 
filtering scheme was indeed found by Rohn [20, 26]. 

Let J = { j ∈ Rn   |€j | = (1, 1, ..., 1)T} denotes a set of all n-component vectors with components 
equal to +1 or –1. Obviously, card J = 2n. For any vector v = (v1, v2, ..., vn)T, let Dv = diag (v1, v2, 
..., vn) denotes a diagonal n×n matrix with components of v along the diagonal. Then, let us form the 
following matrices: 

A A D A D

b b D b
rc r c

r r

= −

= +







I

I

(rad ) ,

rad .
 

where r, c ∈  J. Obviously, using the definition of midpoint and radius of an interval matrix: 

( )
,

,

( )
,

,

A

b

rc

r

ij
ij i j

ij i j

i
i i

i i

a r c

a r c

b r
b r

=
=

= −







=
=
= −







   if  

   if  

    if  
    if  

1

1

1
1

 

hence Arc and br are boundary matrices: Arc, ∈  ∂A, br ∈  ∂b. Now putting: 

Σ(Arc, br) = { ~x  ∈  Rn | (∃ r, c ∈ J) Arc
~x  = br}.  (10) 

we see that Σ(Arc, br) ⊆ €Σ (∂A, ∂b) ⊂  Σ(A, b). Moreover, as proven by Rohn [20, 26], we have 

again, for any regular matrix A, conv Σ(Arc, br) = conv Σ(A, b), hence also 

hull Σ(Arc, br) = hull Σ(A, b). Since the number of different pairs of vectors r, c ∈  J equals 

 2n⋅2n = 22n, we have card Σ(Arc, br) ≤ 22n (some of the solutions for different pairs of vectors r, c 

may be the same). However, since we do not know in advance which solutions will repeat in Σ(Arc, br), 
finding this set, and hence the hull, would still require solving (exactly) 22n linear systems of n equations. 
That, though still exponential with the size of the problem, is already a huge improvement in comparison 
with the worst-case complexity of the CEIC algorithm, namely by a factor of 2n2+n / 22n = 2n2–n.  

However, still further improvement is possible. Namely, as Rohn showed in [26], each vertex of 

conv Σ(A, b) satisfies the equation Arc
~x  = br where c = sgn ~x  (i.e., Dc

~x  ≥ 0 ). Hence, if we could 
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somehow find for every vector r ∈  J such a vector c ∈  J that the solution ~x  to the linear systems of 
equations Arc

~x  = br will have the property  sgn ~x  = c (for the purpose of this analysis we can safely 
assume that sgn 0 = 1), then the total number of linear systems to solve would be only 2n (i.e., the 
cardinality of J ). This leads to the following algorithm: 

Rohn Sign-Accord algorithm (RSA): 
For every r ∈ J do: 

Step 0: Select a c ∈ J  (recommended: c = sgn (
I

A b r
−1 ) ). 

Step 1: Solve Arc
~x  = br. 

Step 2: If  sgn ~x  = c, register ~x  and go to next r, otherwise: 

Step 3: Find k = min { j   sgn ~x j  ≠ cj }. 

Step 4: Set ck = – ck and go to Step 1. 
 

The algorithm finds all 2n vertices of  conv Σ(A, b) in a finite number of steps regardless of the 
choice of initial vector c ∈  J in Step 0. However, the recommendation included there is quite important. 
As it was shown by Rohn [26], while the worst-case complexity of the algorithm is still of the order of  
22n (with the inner loop [Step 1 – Step 4] traversed  2n times for every r), starting with the recommended 
value of c leads for many types of problems to much smaller complexity, often as low as 2n (with the 

inner loop traversed only once for every r). The hull of Σ(A, b) is then easily obtained as the hull of the 
2n solutions registered at Step 2 of the algorithm. In fact, compiling the whole set of solutions is not 
necessary for calculation of the hull, as it can be made “on the fly”, by simply updating current minimal 
and maximal values of vector ~x  components with every new solution found at Step 2. 

The algorithm can be also extended into a more complicated form capable of testing for regularity of 
the matrix A along the way [20, 26]. 

A problem with this algorithm may arise for systems in which components of some endpoint 
solution(s) are near to zero. Then possible roundoff errors may produce wrong value for sgn ~x  at Step 2, 
which may lead to infinite looping of the algorithm [20]. 

3.1.2. The linear programming method (LPM) 

As the problem of finding the hull is in fact a problem of finding extremal values of some set of numbers, 
one may try to formulate it as an optimisation problem—minimisation (or maximisation) of appropriate 
objective function subject to appropriate constraints. The resulting linear programming method (LPM) 
has been first formulated in [21] and then used, among others, in [12, 23, 25].  

The derivation of the method starts from Oettli and Prager [22] characterisation of the solution set 

Σ(A, b) (see Eq. (8)): 

( )~ , ~ (rad ) ~ radx A b Ax b A x b∈ ∑ ⇔ − ≤ +
D D

. 
We may get rid of the first absolute value in the formula rewriting the inequality above as an equivalent 
system of two inequalities: 

D D

D D

Ax b A x b

Ax b A x b

− ≤ +

− + ≤ +







(rad ) ~ rad ,

(rad ) ~ rad .
 

They still are non-linear with respect to ~x . However, if we know the sign s of the solution ~x ,  s = 
sgn ~x , we can write ~x  = Ds |€ ~x  |, where Ds = diag (s1, s2, ..., sn)  (see previous Section; again we 
can safely assume that sgn 0 = 1). Then: 
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( rad ) ~ rad ,

( rad ) ~ rad ,

D D

D D

AD A x b b

AD A x b b
s

s

− ≤ +

− + ≤ − +






 

and finally: 

( rad ) ~ ,

( rad ) ~ .

D

D

AD A x b

AD A x b
s

s

− ≤

+ ≥






 

The matrices on the left-hand side of the inequalities above are real matrices build from  endpoints of the 
original interval matrix A, but they are not boundary matrices, since some coefficients also change sign: 

( rad )
) ,

) ,

( rad )
) ,

) .

I

I

AD A
D

D

AD A
D

D

s
s

s

s
s

s

− =
=

− = −







+ =
=

− = −






ij
ij jj

ij jj

ij
ij jj

ij jj

a

a

a

a

   if  (

   if  (

   if  (

   if  (

1

1

1

1

 

The above inequalities are now linear with respect to |€ ~x  |, hence putting ~ ′x  = |€ ~x  |, we can formulate 
the following two coupled linear programming problems allowing us to find minimal and maximal values 
of ~x  in any given orthant of the solution space Ox1... xn defined by the sign vector s [21]: 

Finding upper bound ~x + : 
Maximise f( ~ ′x ) = ~ ′x  subject to 3n linear constraints of Eq. (11),  
then put ~ max ~x D xs

+ = ′ . 

Finding lower bound ~x − : 
Minimise f( ~ ′x ) = ~ ′x  subject to 3n linear constraints of Eq. (11),  
then put ~ min ~x D xs

− = ′ . 

′ ≥

− ′ ≤

+ ′ ≥









~ ,

( rad )~ ,

( rad )~ .

x

AD A x b

AD A x b
s

s

0
D

D

 (11) 

In the case the whole set of solutions Σ(A, b) resides in one orthant defined by the sign vector s, the 
interval vector h = [inf( ~x − , ~x + ), sup( ~x − , ~x + )] provides the required hull. Otherwise, all orthants 
containing solutions should be inspected, that is, the linear programming problems as defined above 
should be solved for each of these orthants (as selected with appropriate choice of vectors s) with the hull 
of such obtained set of solutions giving the required result. Hence, the worst case complexity of the linear 
programming approach is also exponential—it may require solving as many as 2n (the number of 
orthants) coupled linear programming problems. Total complexity depends also on the complexity of the 
linear programming algorithm, especially on the number of evaluations of the four matrix multiplication 
constraints in Eq. (11). 
3.2. Interval estimates of the hull of the solution set 

Trading computational complexity for estimation accuracy, it is possible to derive polynomial-time 
algorithms producing interval estimations that are larger than the hull of the solution set. There is quite a 
number of such algorithms, of various complexity, accuracy, applicability conditions and effectiveness, 
scattered over a wide selection of literature sources. Only a few were as yet tested by us and are described 
here. Applying them to real-world problems is hindered by several obstacles, among others unclear 
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formulation (from algorithmic and computational point of view) and lack of analysis of their 
overestimation properties and/or computational complexity (see Sec. 5.1. below for further discussion of 
this topic).  

Besides the two methods described below, worth mentioning is another effective algorithm due to 
Rohn [27, 29], based on an earlier idea by Hansen.  

3.2.1. Preconditioning 

Trying to solve the original system of interval linear equations Ax = b by some interval extension of the 
standard methods for solving systems of linear equations (e.g., through calculation of interval inverse 

matrix), we get usually large overestimation of the hull of the solution set Σ(A, b), mostly due to certain 
inconvenient features of interval arithmetic (see discussion in Sec. 5.2 below). A common method for 
decreasing the overestimation is to transform the set of equations to a more tractable form. This is usually 
called preconditioning and is based on the following considerations (see Neumaier [20] for appropriate 
supporting theorems). 

First, for an interval matrix A ∈  IRn×n, if CAC′ is an H-matrix for some real matrices C, C′ ∈  Rn×n, 
then A is strongly regular and: 

Σ(A, b) ⊆  {C′ ~x  ∈  Rn ~x  ∈  Σ(CAC′, Cb)}, (12) 
hull Σ(A, b) ⊆  C′ (hull Σ(CAC′, Cb)). 

That is, both the solution set and hull of the original systems of equations are contained in the solution set 
and the hull, respectively, of another system of equations (the preconditioned system), namely the system 
CAC′x = Cb, only transformed by a linear transformation given by C′. Moreover: 

 hull Σ(A, b)≤   C′ 〈CAC′〉–1 Cb . (13) 
Second, as CAC′ is required to be an H-matrix, then also 〈CAC′〉u > 0 for some u > 0 (see the 

definition of the H-matrix in Sec. 2.2) and 

hull Σ(A, b) ⊆  Cb v ⋅ C′ [–u, u], (14) 

where v must satisfy 〈CAC′〉u ≥ v > 0. 
As for the preconditioning matrices C and C′, usually the choices C =

I

A −1  and C′ = I are made. 
Then the condition of CAC′ = 

�

A A−1  being an H-matrix is fulfilled whenever A is strongly regular (i.e., 
�

A A−1  is regular). They are optimal in the sense of Eq. (13), where they give the minimal upper bound 
in a general case. For this choice, Eqs. (12, 14) obtain simpler formulations: 

Σ(A, b) ⊆  Σ(
I

A −1 A, 
I

A −1 b), (12′) 
hull Σ(A, b) ⊆  hull Σ(

I

A −1 A, 
I

A −1 b)). 
and: 

hull Σ(A, b) ⊆  
D

A b
v

−1 ⋅[–u, u]. (14′) 

where u and v must satisfy u > 0 and 〈
I

A −1 A〉u ≥ v > 0. 
This preconditioning is called preconditioning with the midpoint inverse and constitutes the first step 

of many algorithms for estimation of the hull of Σ(A, b). However, as it only optimises the upper bound 
in Eq. (13), in some special cases other preconditioning matrices may give better estimation of the 
solution set and its hull, according to Eq. (12).  

The estimate given by Eq. (14′) is rather crude (one indication of that is that it must be symmetrical 

around zero, which leads to great overestimations when Σ(A, b) is located unsymmetrically and far from 
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the origin). It is also linearly dependent on the norm of the vector b. Hence, one of the possibilities of 
sharpening the estimate is to transform the system into another one with smaller values in the right-hand 

side vector. As can be shown, if we find some particular solution ~x  ∈  Σ(A, b), we have 

hull Σ(A, b) ⊆  ~x + hull Σ(A, b –A ~x ). If ~x  is an appropriately chosen solution (a good choice is the 

solution of the midpoint system: ~x A b= −I I1 ), the residual correction vector b – A ~x  has a chance to be 
much closer to zero than b. Hence, the final estimation: 

hull Σ(A, b) ⊆  ~ ( ~)x A b Ax
v

+ −−I 1 ⋅[–u, u] (14′′ ) 

may be much sharper (note that it is no longer necessarily symmetric around zero, instead being 
symmetric around ~x ). 

To get still better results, the estimate of Eq. (14′′ ) is usually used only as a starting point to be 
improved by some iterative method, like Gauss-Seidel iteration, see the next Section. 

3.2.2. Preconditioned Gauss-Seidel Iteration (PGSI) 

Let us start from writing the system 
~ ~ ~
Ax b=  explicitly as a set of equations: 

~ ~ ~
a x bik k

k

n

i
=
∑ =

1
,  for  i = 1, ..., n. 

Assuming that ~aii  ≠ 0, we can solve the i-th equation for the i-th variable. This gives: 

 ~ (
~ ~ ~ ) / ~x b a x ai i ik k ii

k i
= − ∑

≠
.  

Hence, provided the initial interval enclosure vector x containing ~x  is known and 0 ∉  aii: 

 ~ ( ) /x x b a x ai i i ik k ii
k i

∈ ′ = − ∑
≠

,  

so that in this way we get the i-th component of the new, possibly improved enclosure vector x′. As we 
can repeat this procedure for all  i = 1, ..., n, the full new enclosure vector x′ can be obtained. Since this 
works for all ~x  ∈  x with

~ ~ ~
Ax b= , 

~
A A∈ , and 

~
b b∈ , we have: 

Σ(A, b) ∩ x ⊆  x′ ∩ x, 
i.e. we can obtain a new enclosure which is at least not worse than the previous one. Moreover, this 

means the method works also when Σ(A, b) is unbounded (i.e., when A is singular), provided we are 
interested in finding a better enclosure for a part of the solution set included in some initial box x.  

We can improve the enclosure faster by using on the i-th step the already obtained new enclosures 
from the previous steps. This finally leads to the basic iteration step in the form: 

 yi := ((bi – Σ
k i<

aik yk – Σ
k i>

aik xk) / aii ) ∩ xi ,  for  i = 1, ..., n. 

The above works well when 0 ∉  aii for all i. Fortunately, it can be made to work (still with possible 
reduction of the width of the component xi ) also for diagonal coefficients containing zero, using the 
simple technique described in [8] and based on Kahan arithmetic rules. 

Finally, integrating preconditioning with the above iterative improvement method we may formulate: 
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Preconditioned Gauss-Seidel Iteration algorithm (PGSI): 

Step 1: Calculate the midpoint inverse matrix 
I

A −1 . 

Step 2: Find a solution ~
~ ~

x A b= −1  to the midpoint system of equations 
~ ~ ~
Ax b= . 

Step 3: Replace the initial system with the new system Ax b Ax= − ~ . 
Step 4: Precondition the new system with the midpoint inverse matrix, obtaining: 

I I

A Ax A b Ax− −= −1 1 ( ~) . 

Step 5: Find the vectors u and v necessary to estimate the initial enclosure of the solution set (see 
[20] for justification of this particular choice): 

 u = 〈
D

A −1 A〉–1 (1, 1, ..., 1)T,   v = 〈
D

A −1 A〉 u. 
Step 6: Calculate the initial enclosure x(0) of the solution set: 

 x(0) = ~ ( ~)x A b Ax
v

+ −−D 1 ⋅[–u, u]. 

Step 7: Improve the enclosure by repeated application of the Gauss-Seidel iteration step, calcu-
lating the vectors x(l),  l = 0, 1, 2, ..., by: 

 x(l+1) := ((bi – Σ
k i<

aik xk
l( )+1  – Σ

k i>
aik xk

l( )) / aii ) ∩ xi
l( ), 

 until some suitable stopping criterion is met (e.g., until the enclosure x(l)  ceases to 
improve). 

The above algorithm works for strongly regular matrices A; it gives especially good results when A is 
an H-matrix. If A is not an H-matrix, it may happen than some arbitrarily large initial estimation x is not 
improved at all by the Gauss-Seidel iteration step [20].  

3.2.3. Preconditioned Gauss Elimination (PGE) 

This algorithm is an interval version of the classic Gauss elimination algorithm known from standard 
numerical analysis [20, 24]. Let us briefly review the derivation of the standard method before going into 
its interval version. 

Let A ∈  Rn×n and b ∈  Rn. Starting with the system: 

a a a
a a a

a a a

x
x

x

b
b

b

n

n

n n nn n n

11 12 1

21 22 2

1 2

1

2

1

2

.. .

. . .

. . .
o o r o o o



















×



















=



















, 

we subtract a suitable multiple of the first row from the other rows such that the subdiagonal entries of the 
first column become zero. This requires that a11 ≠ 0; then the multiplication factor for the i-th row is 
li1 = ai1 / a11 , with i > 1. After the subtraction we have the reduced system: 

a a a
a a

a a

x
x

x

b
b

b

n

n

n nn n n

11 12 1

22
1

2
1

2
1 1

1

2

1

2
1

1

0

0

.. .

. . .

. . .

( ) ( )

( ) ( )

( )

( )
o o r o o o



















×



















=



















, (15) 

where: 
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a a l a a a a a

b b l b b a a b
ik ik ik k ik i k

i i i i i

( )

( )

,

,

1
1 1 11

1
1

1
1 1 1 11

1
1

= − = −

= − = −

−

−
 

for i, k = 2, ..., n. After the other unknowns, i.e.  x(1) = (x2, ..., xn)T are determined from the smaller 
system A(1)x(1) = b(1), the first variable is obtained from the first equation as: 

x1 = (b1 – Σ
k >1

a1k xk) / a11 . 

As long as the corresponding diagonal elements a jj
j( )−1  remain nonzero, we may eliminate further 

variables in the same way by: 

l a a

a a l a

b b l b

ij ij
j

jj
j

ik
j

ik
j

ij jk
j

i
j

i
j

ij j
j

=

= −

= −













− −

− −

− −

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,

,

.

1 1

1 1

1 1

 

The variable xj can then be obtained from xj+1, ..., xn by: 

xj = ( b j
j( )−1  – a jk

j

k j

( )−

>
∑

1 xk) / a jj
j( )−1 ,  for  j = 1, 2, ..., n.  

The first step is subsumed by the above after putting A(0) = A and b(0) = b. 
The multiplication factors lij,  i > j, and coefficients ujk = a jk

j( )−1 ,  k ≥ j, occurring in the above 

formulas can be combined into triangular matrices: 

L U=























=





















−

1 0 0 0
1 0 0

1 0
1

0
0 0

0 0 0

21

32

1 2 1

11 12 1

22 2

�

�

� � �

� �

�

�

�

�

� � � �

�

l
l

l l l

u u u
u u

un n n n

n

n

nn,

, . 

such that A = LU,  Ly = b, and Ux = y. Thus, Gauss elimination consists in a factorisation of the matrix 
A into the product of two triangular matrices L and U (the so-called LU-decomposition [24]), reducing 
the solution of the original system of equations to two triangular systems Ly = b and Ux = y which can 
be easily solved by forward substitution and backward substitution as follows: 

yi = bi – Σ
j i<

lij yj   for  i = 1,..., n, 
(16)

 

xi = (yi – Σ
k i>

uik xk) / uii  for  i = n, n–1,  ..., 1.  

The coefficients of L and U can be calculated from: 

lik = (aik – Σ
j k>

lij ujk) / ukk  for  i > k,  
(17)

 

uik = aik – Σ
j i<

lij ujk   for  i ≤ k. 

If A is regular, then even when a jj
j( )−1 = 0 for some j, the process can be finished successfully after a 

suitable permutation of rows or columns of A(j). 
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For interval case, when A ∈  IRn×n and b ∈  IRn, the algorithm can proceed in much the same way 
(according to Eq. (17)), provided all a jj

j( )−1  = ujj do not contain zero. However, due to the properties of 
interval arithmetic, in general you cannot always zero the coefficients under the diagonal in Eq. (15). 
Hence, the product of triangular matrices L and U defined according to Eq. (17) does not equal A; 
instead, we have only an inclusion A ⊆  LU. Similarly, we have only inclusions Ly ⊇  b and Ux ⊇  y 
instead of equalities. Hence, the resulting interval vector x will be in general wider than the hull of the 
solution set. Moreover, when some ujj contains zero, permutation of the matrix does not always help, 
even when A is regular [20]. The algorithm always terminates, however, when A is an H-matrix. When A 
is an M-matrix and b ≥ 0 it produces the exact hull of the solution set. Again, since when A is strongly 
regular the preconditioned matrix 

�

A A−1  is an H-matrix, it gives good results when combined with 
preconditioning, often better than Gauss-Seidel iteration. In particular it has the quadratic approximation 
property, that is, the overestimation is of order O(ε2) with the size of b, which is advantageous when 
 b < 1. 

The PGE algorithm can be then formulated as follows: 

Preconditioned Gauss Elimination algorithm (PGE): 

Step 1: Calculate the midpoint inverse matrix 
�

A −1 . 

Step 2: Precondition the system with the midpoint inverse matrix, obtaining: 
I I

A Ax A b− −=1 1 . 

Step 3: Perform the LU-decomposition of the preconditioned matrix, so that: 
�

A A−1 ⊆  LU, see 
Eq. (17). 

Step 4: Calculate the vector y (such that Ly =
I

A b−1 ) by forward substitution. 

Step 5: Calculate the enclosure of the solution set, namely the vector x (such that Ux = y) by 
backward substitution. 

4. MECHANICAL EXAMPLES 

Our interest with interval methods turned up mainly as a result of our research on hybrid systems for 
qualitative and quantitative analysis of mechanical systems [11]. The hybrid expert system for analysis of 
truss structures we are currently implementing [16, 17] contains thus an interval-based module providing 
a qualitative-numerical analysis of the trusses. The truss structure examples given below were analysed 
using that system. The frame example is a simple textbook example [4] used in the experiments with 
fuzzy set approach to mechanical structures [23, 34]; we are considering to extend our hybrid system to 
incorporate analysis of frame structures in the future. For simplicity, the examples are restricted to planar 
structures. An extension to spatial structures is quite straightforward. 

4.1. Truss structures 

A truss structure is a mechanical system build from elastic elongated bars joined at nodes using 
flexible, rotary joints, and loaded by some external force(s) applied at its nodes. Some of the nodes can be 
supported, by full support (giving no degrees of freedom to the supported node), or partial (sliding) 
support (allowing the node to move along a specified line or within a specified plane). In such a structure 
there is no bending of bars, hence the bars carry only axial forces. A planar truss has all its bars, as well as 
the loads, placed in a single plane. An example truss is shown in Fig. 1a, with one external load and two 
supports (one full, one sliding). 
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4.1.1. The system of linear equations for the truss 

The standard displacement method of truss analysis leads to a set of linear equations with node 
displacements in the bars as unknowns. The construction of this system of equations starts from two sets 
of equations: one relating magnitudes of axial forces Pij in the bars to the displacements of the nodes, and 
the other coming from force equilibrium condition at every node: 

P s s d d d d

F P

ij ij ij ji ij j
x

i
x

ij j
y

i
y

ij

i ij
j

n

= + = − + −

+ =
=
∑

( ) (( ) cos ( )sin ),

,

∆ ∆ α α
� �

1
0

 (18) 

where indices i, j = 1, ..., n denote the node numbers,
�

Fi  is the external load at the i-th node, 
�

Pij  is the 
reaction force exerted by the bar (ij) at the node i, sij = Aij Eij / lij is the stiffness of the bar (ij), with Aij 
being cross-sectional area, Eij Young’s modulus, and lij length of the bar (we set sij = 0 if there is no bar 
linking nodes i and j), while ∆ij and ∆ji are projections of the displacement vectors of node i and j on the 
bar (ij), see Fig. 1b. The above assumes small deformations and linear elastic material law, so that the 
elongation of the bar can be given by the simple formula (the first row of Eq. (18)) and change of 

directions of the bars due to displacements of their ends can be neglected. Note also that Pij = 
�

Pij  , 
and by convention Pij > 0 when the bar is stretched, and Pij < 0 when the bar is compressed. 

From Eq. (18) one easily obtains a set of 2n linear equations with displacement components d di
x

i
y,  

as unknowns, the right-hand side vector containing components of the external load vectors F Fi
x

i
y, , and 

 

Fig. 1. An example of planar truss structure (a)  
and a deformed bar between two nodes (b);  

the deformation of the bar is greatly exaggerated in the drawing. 
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coefficients of the matrix of the system (the so-called stiffness matrix in this formulation) relating node 
displacements and loads. Omitting the derivation details that may be probably quite boring to most of the 
readers of this journal, we only show the final form of the linear system of equations Ad = b for the 
planar truss structure: 

i i j j
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j
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where: 
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 (20) 

Additional treatment is needed to account for the supported nodes, whose displacements are restricted 
partially or completely. For brevity, it will not be explained here in detail—it suffices to say that in the 
formulation used here it amounts to deleting some rows and corresponding columns from the matrices of 
the system of Eq. (19). After solving the system of Eqs. (19, 20) for node displacements, the axial forces 
in the bars can be calculated from the obtained displacements using the formulas from the first row of Eq. 
(18). 

Note that in this formulation the matrix A of the system is symmetric and for every parameter of a 
given bar, more than one coefficient of the matrix depends on its value (more precisely, as many as 16 
coefficients may depend on it). The significance of these observations will be made more clear in Sec. 5.2 
below.  
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Fig. 2. Three cases of parameter uncertainties in the example truss (a)  
and node displacement results (exaggerated ten times) for the case a1a (b). 

4.1.2. Solving trusses with interval methods: an example 

In this Section we discuss briefly results of interval analysis of the example truss, with three cases of 
parameter uncertainties, as depicted in Fig. 2a. We assume the stiffness of some of the bars to be 
uncertain, varying around the nominal value by ±5% (in cases a1a and a2) or by ±10% (case a1), for a 
single bar (in cases a1 and a1a) or for two bars (case a2). Nominal values of parameters are also given.  

For simplicity, the parameters of the truss are given here as dimensionless numbers, since the physical 
values are not relevant to our purely numerical analysis. The given values were chosen so as to be 
physically realistic when endowed with appropriate units. 

Table 1. Interval estimates for the example truss (with 7×7 matrix); 
the results with sign different than for the nominal solution are underlined. 

a) a1a:  s23 uncertain by ±5%  [16 intervals and 14 zeros in the matrix] 

 d0 
[×10–3]

hull Σ(A, b) 
[×10–3] 

wid [*]/d0 
[%] 

PGSI 
[×10–3] 

wid [*]/d0 
[%] 

d x
1  –20 [–42.10, –12.03] 150 [–42.10, 2.10] 221 

d x
2  –2.5 [–14.12, 4.47] 744 [–14.12, 8.72] 914 

d y
2  –38.71 [–60.91, –30.71] 78 [–60.91, –22.03] 100 

d x
3  –5.0 [–18.81, –0.019] 376 [–18.81, 7.85] 533 

d y
3  –34.14 [–62.44, –23.26] 115 [–62.44, –14.52] 141 

d x
4  –12.5 [–29.65, –6.32] 187 [–29.65, 4.65] 274 

d y
4  –19.57 [–40.63, –11.98] 146 [–40.63, 1.49] 215 
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b) a1:  s23 uncertain by ±10%  [16 intervals and 14 zeros in the matrix] 

 d0 
[×10–3] 

hull Σ(A, b) 
[×10–3] 

wid [*]/d0 
[%] 

PGSI 
[×10–3] 

wid [*]/d0 
[%] 

d x
1  –20 [–824.6, –6.00] 4090 [–824.6, 784.6] 8050 

d x
2  –2.5 [–425.6, 28.57] 18200 [–425.6, 419.7] 33800 

d y
2  –38.71 [–846.8, –24.65] 2120 [–846.8, 738.7] 4100 

d x
3  –5.0 [–507.8, 11.76] 10400 [–507.8, 495.7] 20100 

d y
3  –34.14 [–1064, –16.22] 3070 [–1064, 957.2] 5930 

d x
4  –12.5 [–636.7, –1.64] 5080 [–636.7, 611.7] 9990 

d y
4  –19.57 [–786.0, –6.24] 3980 [–786.0, 746.9] 7820 

 
c) a2:  s23 and s34 uncertain by ±5%  [28 intervals and 12 zeros in the matrix]: 
 the matrix is singular (solution set unbounded). 

The main results (node displacements) are summarised in Table 1. Figure 2b shows graphically the 
results (except for the node 1) for the case a1a; note that the displacements are exaggerated ten times for 
readability. The table compares the exact estimate of the solution set, i.e., the interval hull obtained by 
one of the algorithms of Sec. 3.1 with its estimate obtained by one of the algorithms of Sec. 3.2. The table 
contains also the nominal solution d0, i.e., the solution of the non-interval system of Eq. (19) for nominal 
values of parameters, as well as widths of the interval estimates relative to the nominal solution. 

For the polynomial-complexity estimation methods (see Sec. 3.2), only the results of the PGSI 
algorithm are included in the table. The results of the PGE algorithm are practically the same, with only 
slight differences in a few places. 

As can be seen from the tables, the resulting intervals are quite wide, compared to the width of the 
parameter intervals (the latter being equal to 10% for the cases a1a and a2 and 20% for the case a1). For 
the case a1a (a single parameter uncertain by ±5%), the tightest estimate possible in this formulation (i.e., 
the hull) produces the relative width between 8 and as much as 74 times greater than the width of the 
parameter interval. The more effective polynomial-complexity methods add significant overestimation 
(with resulting widths up to about two times larger than for the hull). The widths for the case a1 (with 
uncertainty increased to ±10%) are greater by more than an order of magnitude. It indicates that the width 
of the hull is very sensitive to an increase of the width of interval coefficients in the matrix. More 
annoying, notwithstanding the comparatively large width of the resulting intervals, in many cases even 
the sign (i.e., direction) of them becomes uncertain (indicated by underlining of the offending values)—
the indeterminacy surely not justified by the uncertainty of the parameters. Hence, even the gross 
qualitative feature of the result has been estimated incorrectly in some places. For all other example 
trusses we have analysed, the general properties of the results are much the same. A systematic analysis 
of the dependence of widths of the results and overestimation effects on various types and extents of 
parameter uncertainties will be a subject of separate publication. 

With two uncertain parameters (the case a2 with ±5% uncertainty), the resulting interval matrix 
becomes singular, hence the set of solutions becomes unbounded (see Sec. 5.3 for more detailed 
discussion of this problem). As a result, the standard interval analysis does not produce any useful 
information in this case, despite the fact that real uncertainty of the resulting displacements (as it will be 
shown below in Sec. 5.2.3.1) remains quite small in this case too.  

The results for this example show that standard interval analysis of mechanical structures with 
parameter uncertainties sometimes may not produce any useful results. The causes of the problem, 
together with the methods of reducing it, are discussed in more detail in Section 5 below.  
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4.2. Frames 

A frame is a mechanical system more general than a truss structure. It is build from elastic elongated 
beams joined at nodes using both stiff joints (not allowed in truss structures) and possibly also rotary 
joints (like in truss structures), and loaded by some external forces applied at its nodes or distributed 
along the beams. Some of the nodes can be supported by full support (giving no degrees of freedom to the 
supported node), or partial (sliding) support (allowing the node to move along a specified line or within a 
specified plane). In frames a possibility of bending of beams is taken into account, hence the beams can 
carry also bending moments. A planar frame has all its beams, as well as the loads, placed in a single 
plane. An example planar frame is shown in Fig. 3a, with three types of support, and an external load 
distributed uniformly along the beam (24). 

4.2.1. A frame example 

For brevity, we shall not delve into general methods of analysing frame structures, restricting ourselves to 
showing the application of interval methods on the example frame (Fig. 3), after [23] (with several 
modifications), as it will suffice for our purposes here. 

 

Fig. 3. An example of a frame (a)  
and its fundamental system of internal parameters (b). 

Assuming again small displacements and linear elastic material law and using the method of forces, 
the frame in question can be described by the set of equations which start from five equilibrium equations 
for forces and bending moments, see Fig. 3b: 
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Then, the three canonical equations linking bending moments with material properties of the beams 
are given below, in matrix form (the derivation of the formulas is omitted here for brevity, see [4]). The 
beam properties are Young modulus E and momentum of inertia J of the beam cross-section. 
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We can easily combine the above systems of equations into a single system of linear equations for 
reaction forces and bending moments. In this case the final matrix of the system is not symmetric, but 
similarly as in the case of trusses (Sec. 4.1.1), more than one coefficient of the matrix depends on the 
value of any given parameter. Moreover, also the elements of the right-hand side vector depend on 
parameters of the beams, not only on external loads (this is partly due to the presence of distributed load 
along one of the beams). Again, the significance of these observations will be made more clear in Sec. 5.2 
below. 

4.2.2. Interval solutions of the frame 

To solve our example frame, we must fix some particular numerical values to its parameters, some of 
them possibly uncertain, hence modelled by intervals. Similarly as for truss structures, the parameters of 
the frame are given here as dimensionless numbers—it is assumed the given values are physically 
realistic when endowed with appropriate units. First, we assume here that all the beams have the same 
Young modulus E, but momentum of inertia J of beam cross-sections are related by the formula 
J12 = J23 = 1.5J24. Substituting that to the combined equations for the frame and making appropriate 
simplifications, we get the system: 
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. (21) 

Finally, we take the values of lengths of the beams and load to be, respectively,  l12 = l24 = 1, l23 = 
0.75, and q = 10, but with the uncertainty of ±1%. Hence they can be represented by intervals: 
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l12 = l24 = [0.99, 1.01],  l23 = [0.7425, 0.7575],  q = [9.9, 10.1]. (22) 
We assume that there is no prestressing of the structure due to inexact dimensions of the beams. For that, 
we can either treat the uncertainty as the errors of measurements of the elements of the already existing 
structure, or else assume the structure will be assembled from inexact elements, but in a way that does not 
lead to prestressing (e.g., by slightly moving appropriate supports when necessary). 

Substituting these values to Eq. (21) and calculating the interval coefficients according to the rules 
given by Eqs. (1, 2) we get finally the linear interval system with matrices: 
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Solving the system with the methods described in Sec. 3, we obtained interval estimations of the 
solution set summarised in Table 2 below. The table includes the exact estimate (the hull) of the solution 
set as well as the estimates obtained by the approximate algorithms of Sec. 3.2. As it happened, both 
approximate methods tested by us produced the same estimations (within the accuracy used in the table). 
For comparison, the table contains also the nominal solution x0, i.e., the solution of the non-interval 
system of Eq. (21) for nominal values of parameters l12 = l24 = 1, l23 = 0.75, and q = 10, as well as the 
widths of the interval estimations relative to this nominal solution (in percent). 

Table 2. Comparison of interval estimates for the example frame. 

 x0 hull Σ(A, b) wid [*]/x0 
[%] 

PGSI, PGE wid [*]/x0 
[%] 

M1 0.25 [0.225, 0.278] 21.2 [0.223, 0.278] 22 

M21 –0.5 [–0.545, –0.459] 17.2 [–0.545, –0.457] 17.6 

M24 –1 [–1.061, –0.943] 11.9 [–1.061, –0.942] 12 

R y
1  –0.75 [–0.831, –0.677] 20.6 [–0.831, –0.671] 21.4 

R y
3  6.75 [6.227, 7.280] 15.6 [6.216, 7.285] 15.8 

R y
4  4 [3.753, 4.252] 12.5 [3.753, 4.254] 12.5 

R x
1  –0.667 [–2.059, 0.723] 417 [–2.088, 0.748] 425 

R x
3  0.667 [–0.723, 2.059] 417 [–0.748, 2.088] 423 

As can be seen from the table, the resulting intervals are quite wide compared to only 2% width of the 
parameter intervals, though in general they are much narrower than for the truss example, seemingly due 
to much smaller widths of parameter intervals. The tightest possible estimate in this formulation, namely 
the hull of the solution set, produces the relative width at least 6 times greater than the width of the 
parameters, and for two unknowns (horizontal reactions R x

1  and R x
3 ) as much as more than 200 times 

greater. Also the sign (i.e., direction) of estimates for these two reactions becomes uncertain (indicated by 
underlining). Both polynomial-complexity methods (PGSI and PGE) produced identical results, adding 
only a little overestimation over the hull. It confirms the observation made for the truss example in Sec. 
4.1.2 that the overestimations for the hull of the solution set tend to grow fast with the widths of the 
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coefficients; for our frame, the widths are small (only 2% compared with 10% or 20% for the truss 
example).  

Again, the sources of these overestimations, together with the possible approaches to reduce them, are 
discussed in the next Section.  

 
5. PROBLEMS WITH INTERVAL APPROACH 

The sometimes large widths of the solution intervals as compared with uncertainty of the parameters, 
occurring in the examples discussed in the previous Section, may raise doubts about practical usefulness 
of interval methods for analysis of linear mechanical systems. The answer to these doubts depends on the 
question whether the results reflect the real uncertainty of the solutions, or constitute only an artefact of 
the method itself. Fortunately, a large part of the overestimation is due to certain deficiencies in the for-
mulation of the problem; in theory, with proper handling of interval arithmetics peculiarities, much better 
results can be obtained. 

Any new technique or approach introduces new possibilities and promises of solving new kinds of 
problems, but it also introduces some new problems and difficulties of its own. Interval methods are no 
exception here. In this Section, several basic difficulties with application of interval methods to solving 
linear mechanical problems are identified and discussed. The discussion provides some advice as to 
applicability and relative merits of different approaches, as well as indicates several urgent and promising 
avenues for further research in this comparatively young field of numerical analysis. 

5.1. Inexact estimates and algorithm efficiency 

The estimates of solutions of interval systems of equations possible to obtain by the methods available 
today are usually not very accurate. There are several different types (and sources) of this inaccuracy, the 
main of them being: 

•  The methods produce interval enclosures (n-dimensional rectangular boxes) which are a rather bad 
approximations to the often star-like or elongated shapes of the solution sets. As a result, the real 
solution sets occupy often only a tiny percentage of the volume of the enclosing box, even for the 
tightest possible interval enclosures (hulls). 

•  More computationally efficient estimation methods produce enclosures often substantially larger than 
the tightest possible, in some cases with overestimations growing fast with the size of the system or the 
amount of uncertainty in the parameters. 

•  Even more fundamentally, the very formulation of linear mechanical problems in the form of linear 
interval systems of equations leads to large overestimations caused by certain properties of interval 
arithmetic, as mentioned in Sec. 2.1. For linear systems of equations the effect is known under the 
name of coefficient dependence problem. 

The coefficient dependence problem is of different and more fundamental nature than the other two, 
which justifies its separate treatment in Sec. 5.2 below. The other two problems, together with the related 
question of efficiency (computational complexity) of algorithms for finding solution set enclosures, are 
discussed in the next two subsections. 

5.1.1. Interval enclosures versus shapes of solution sets 

Let us illustrate the problem with a two-dimensional example of an interval linear system whose solution 
set is a diagonal rectangle (Fig. 4). Depending on the ratio of widths of the coefficients b1 and b2, the 
solution set can be arbitrarily elongated, and thus the ratio of its area Ss to the area Sh of the smallest 
enclosing two-dimensional interval (hull) can be made arbitrarily small. In this case, Ss / Sh = 
2 wid b1 wid b2  / (wid b1 + wid b2)2. Hence the ratio goes to zero if any of the widths goes to zero, 
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with the maximal value of 1/2 attained for wid b1 = wid b2 (the solution set is then a square rotated by 
45 degrees). As a result, in most cases the interval enclosure contains mostly points that do not belong to 
the solution set, and provides rather little information about the shape of the solution set. 

Note that such elongated shapes of solution sets are not uncommon in mechanical structures we 
analysed. Moreover, the direction of elongation of the solution set of this kind may be a very useful and 
informative result in applications (see our other papers [16, 17]). Thus, another kind (shape) of the 
enclosure might be much more useful in such cases. One possible approach consists in finding, for a 

given linear interval system with solution set Σ(A′, b′), another linear interval system of the type shown 

in Fig. 4, with a solution set Σ(A″, b″) such that Σ(A′, b′) ⊆  Σ(A″, b″). Then, the coefficients of the 
real matrix A″ and interval vector b″ would provide the parameters (orientation, position and 
dimensions) of an enclosing rectangular box in the Ox1... xn space4) . As far as the authors of this paper 
know, no work using this idea has been published. So, it remains a promising avenue of further research. 

 

Fig. 4. An example of an “elongated rectangle” solution set. 

In many other cases, the shape of the solution set is star-like with elongated spikes (rays) protruding to 
arbitrary distances. The spikes become longer and longer when the matrix of the system approaches a 
singular matrix. In the limit, when the matrix becomes singular, the end of the spike goes to infinity and 
the solution set becomes unbounded. It can be illustrated by the system shown in Fig. 5 below. For 
example, the left hand spike, currently at the point (–2, 4), may be shifted arbitrarily far away to the 
upper left by lowering the value of the coefficient a22  from –1 down to –2, where the singularity will 
appear. For such ill-conditioned systems some more informative characterisation of the solution set, other 
than the simple interval enclosure, would be much more useful. As these phenomena occur mostly for the 
systems near singularity, investigation of singular and near-singular interval systems should be useful 
here (see Sec. 5.3 below for additional discussion of problems with singularity treatment). 

Partial answer to such problems may be in some cases provided by calculating also inclusion-maximal 
inner interval estimates, i.e. multidimensional intervals (boxes) wholly included in the solution set [32, 
                                                      
4)  Systems with real (non-singular) matrix A and intervals occurring only in the right-hand side vector b produce 

solutions sets that are parallelepipeds; when AAT is a diagonal matrix they became rectangular prisms. For 
orthogonal matrices (i.e., when AAT = I), the parameters of the prism are separated in the system—rows of A 
become simply versors for the directions of the prism edges, while intervals in b give positions and lengths of the 
edges along the directions given by the versors. 
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33]. However, in many cases (like the one with “elongated rectangle” solution set discussed above), the 
maximal inner estimate also does not carry much information about the shape of the solution set and may 
be even not unique. Quite another possibility is to approximate the solution set not by a single interval 
bounding box, but by a number of smaller boxes. This technique does not solve all the problems, but is 
useful in some applications, especially in optimisation [8].   

5.1.2. Inexact and inefficient estimation algorithms 

In addition to the kind of overestimation due to the sometimes awkward shapes of solution sets, the 
methods producing interval enclosures of the set may produce additional overestimation. Moreover, the 
overestimation problem is closely linked with computational complexity of estimation algorithms. 
Namely, as it was mentioned in Sec. 3, the methods that produce exact hull of the solution set are of 
exponential complexity, hence not very practical for larger systems of equations, while the polynomial 
complexity algorithms produce the result faster, but for the price of often large overestimation of the hull. 

One cannot expect any significant improvement of the situation, as it was proved that finding the exact 
hull is a NP-hard problem5) [30]. Later it was proven that even computing an enclosure with relative over-
estimation ∆x xi i/  (for each xi ≠ 0 ) smaller than 4/n2 and with absolute overestimation ∆xi  smaller 
than 1/4n4 is NP-hard too [28]. Note that in the above formulas xi  is the upper bound of the i-th 
component of the interval enclosure vector, not its width. It seems the above estimates of “attainable 
polynomial accuracy” are rather conservative on the low side, as they are decreasing rather fast with the 
size n of the system, contrary to the behaviour of most known estimation algorithms which produce 
overestimations that grow with the size n.  

The polynomial-complexity estimation algorithms produce interval bounds that overestimate the exact 
enclosure (hull). The amount of overestimation varies between algorithms and usually grows with the size 
n of the system of equations and/or with the norm of the right-hand side vector b, sometimes quite fast [8, 
20]. However, in many cases the bounds on overestimation are not known or are very crude, giving only 
little information on the possible amount of estimation error.  

Also, the general indication of the type of growth of the overestimation is not very useful in practical 
applications where we are rather interested in knowing the size of estimation error for a particular interval 
system at hand, not the general behaviour of the algorithm for all conceivable problems. In this respect, a 
very promising approach is offered by algorithms that provide lower and upper bounds for the hull, like 
the Rump algorithms [31], discussed in Sec. 5.2.2 below in connection with the coefficient dependency 
problem. Even if such bounds are crude, they still provide more information of practical importance than 
the general indication of the type of growth of the estimation error. Hence, at least from the practical 
point of view, investigation of the possibility to obtain such bounds from existing algorithms, or finding 
new algorithms offering such a possibility, constitute another very useful direction of further work in the 
field. 

 

5.1.3. Generality versus specialisation of estimation algorithms 

Many interval methods for solving linear systems of equations are specialised for specific types of 
systems (that is, system matrices). For other types of matrices they either do not work (giving wrong 
results) or are far less effective (either with respect to computational complexity, or estimation accuracy, 
or both) than for the special case. The effects of this state of affairs are both positive and negative.  

On the one hand, one can try to find a method for the particular problem at hand that may be much 
better than some general method, producing better results faster. For example, for systems with inverse 
positive matrices there is an algorithm (due to Beeck [2]) producing the exact interval enclosure (hull) 

                                                      
5)  To be precise, they proved that it is NP-complete, i.e. of the same complexity as problems from the NP 

complexity class which are believed to be of exponential complexity, though at the current stage of development 
of the complexity theory that conjecture has not yet been proved. 
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with linear computational complexity—requiring only to solve at most 2n real systems of equations (with 
selected boundary matrices).  

On the other hand, testing applicability of a given method to the given case is often quite involved and 
computationally expensive (see e.g. the applicability condition of the singular values calculation method 
for interval matrices given in [5]). This additional overhead may easily neutralise the gain expected from 
the specialised method. This is often aggravated by the fact that the classification of matrices implied by 
various algorithms often does not necessarily coincide with the classification that is meaningful from the 
application point of view. Hence, the method painfully tested to be applicable to one problem may happen 
to be not applicable to a problem quite similar from the application point of view (not speaking about 
finding in the still scattered and unstructured literature that single method which may be good for the 
given case...).  

As the field is still rather young, all these causes are still active in producing substantial amount of 
confusion. That certainly calls for some tidying and structuring work, possibly culminating in production 
of a compendium book serving as an interval counterpart of the highly popular “Numerical Recipes” [24], 
or even some automatic or semi-automatic tools serving as consultants for those trying to apply interval 
methods to real-world problems. 

5.2. Interval arithmetic deficiencies and coefficient dependence 

As it was hinted at in Sec. 2.1, certain formal deficiencies of the interval arithmetic, like that the usual 
distributive law is not valid here, only the weaker subdistributive law of Eq. (3), may lead to 
overestimation errors during calculation of interval expressions. Indeed, if not taken properly into 
account, these effects may severely diminish the accuracy of interval estimates of solutions of linear 
systems of even moderate complexity. In this Section, we attempt to explain the effects in more detail, 
show how they affect the accuracy of interval estimations, and discuss possible remedies to the problem.  

5.2.1. Computing interval expressions 

One of the unpleasant consequences of the mentioned weaknesses of interval arithmetic is that ordinary 
algebraic calculation of interval expressions in which some interval variable(s) occur more than once may 
produce wrong results (as compared to proper results given by Eqs. (1) or (1′); unfortunately, these 
formulas are rather hard to apply directly—see the discussion of the SPI method in Sec. 5.2.2 below). 
Only in certain cases such a calculation gives the valid result, otherwise substantial overestimations can 
arise [1, 8, 20]. Fortunately, due to inclusion isotonicity property (Eq. (4)), we know that the result will be 
always at most an overestimation—we never obtain an interval smaller than the correct result (see [8] for 
more precise conditions for that to be true). Hence, we shall always get a reliable upper bound(s) on the 
correct interval solution. 

For example, consider the expression f(x) = 1/(1+1/x), for x ≠ 0. In standard arithmetic it is 
equivalent to a simpler formula g(x) = x/(x+1), requiring only one division instead of two required for 
f(x), but containing the variable x twice. Putting x = [2, 3] and using directly the interval arithmetic rules 
given by Eq. (2), one gets:  

f([2, 3]) = 1/(1+1/[2, 3]) = 1/(1+[1/3, 1/2]) = 1/[4/3, 3/2] = [2/3, 3/4],  
(which is correct), whereas: 

g([2, 3]) = [2, 3]/([2, 3]+1) = [2, 3]/[3, 4] = [2, 3] ⋅ [1/4, 1/3] = [1/2, 1].  
Thus, g([2, 3]) ≠ f([2, 3]), and calculation according to the seemingly simpler formula g(x) overesti-

mates significantly the value of f(x). The problem is that many functions cannot be expressed in the form 
in which the variables occur only once (or in certain other forms for which the overestimation problem 
does not arise too [1]). For another example, take an even simpler problem of calculating x2. Putting 
x = [−1, 1] and using the general rule defining interval arithmetic operators given by Eq. (1), we get, 
quite naturally, [−1, 1]2 = [0, 1], while using the formula x2 = x ⋅ x, obvious in arithmetic of reals, one 
gets, quite wrongly, [−1, 1]2 = [−1, 1] ⋅ [−1, 1] = [−1, 1]. Thus formulas of the sort x2 + x and  
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x (x + 1) are not only not equivalent in interval arithmetic, but also cannot be transformed into forms 
giving correct values when evaluated with straightforward application of interval arithmetic operations. 
Namely, with standard arithmetic rules, we have: 

(x2 + x) x := [−1, 1] = [−1, 1]2 + [−1, 1] = [0, 1] + [−1, 1] = [−1, 2], 

(x (x + 1)) x := [−1, 1] = [−1, 1] ([−1, 1] + 1) = [−1, 1] [0, 2] =  [−2, 2], 
while using the basic definition of interval operation extension (Eq. (1)) we get the single correct result: 

{ ~x 2 + ~x  ~x ∈  [−1, 1]} = { ~x ( ~x  + 1)  ~x ∈  [−1, 1]} =  [–1/4, 2]. 

5.2.2. Matrix coefficients dependence and parametric formulation 

In the case of systems of linear interval equations originating from problems of mechanics, this leads 
to the so-called coefficient dependence problem. For these systems, the coefficients in the equations are 
not independent quantities—they are all functions of some (usually few) physical system parameters (e.g., 
stiffnesses of the bars in truss structures). Thus, the problem is in fact of the form: 

A(p) x = b(p),  with p = (p1, p2, ..., pk),  (24) 
where pi, i = 1, ..., k, are given parameters varying over specified intervals and for every ~p p∈ , 
A p(~ )  and b p(~ )  are real matrices. Since, usually, many different coefficients of the matrix A and the 
vector b depend on the same parameters, the variability of the coefficients within their intervals is no 
longer independent (as is assumed in the classical formulation). Hence, in the resulting expression for the 
solution x the same parameter occurs several times. Note also that the α-cut method for solving fuzzy 
equations [3] also leads naturally to parametric interval equations, with the threshold value α ∈  [0, 1] 
acting as an interval parameter. 

The set of solutions of the problem formulated by Eq. (24) is naturally defined as: 

Σ(A(p), b(p)) = {~ ( ~ ) (~) ~ (~)}x p p A p x b p∈ ∃ ∈ =R n . (25) 
Due to the properties of interval arithmetic explained in the previous subsection, solving such interval 

systems with interval arithmetic without taking the dependency into account produces usually much 
larger solution set than the true one defined by Eq. (25).  

An attempt to calculate the hull of the solution set of Eq. (25) with the CEIC method, i.e. by solving 2k 
real-number systems of equations for all combinations of endpoints of the interval parameters pi (that is, 
for all members of ∂p), will not produce valid results unless it is assured that components of the solution 
vector x depend monotonically upon all pi ’s. This is rarely the case: as is shown by the simple two-
dimensional example of Fig. 5, even when some coefficients of the system depend linearly and 
monotonically on a single interval parameter, the solutions depend on the parameter p non-
monotonically, hence in general we have only the relation of inclusion here: 

hull Σ(A(∂p), b(∂p)) ⊆  hull Σ(A(p), b(p)), 
not necessarily an equality. For instance, in the example of Fig. 5 we have: 

hull Σ(A(p), b(p)) = 
[ / , ]

[ , / ( )]
[ . , ]
[ , . ]

−
−









 ≈

−









2 23 1
0 4 2 6 1

0 087 1
0 1026

, 

while: 

hull Σ(A(∂p), b(∂p)) = 
[ , ]
[ , ]
0 1
0 1









  ≠ hull Σ(A(p), b(p)). 
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Fig. 5. A parametric system example. 

The comparison of hull Σ(A(p), b(p)) = ([–0.087, 1], [0, 1.026])T with hull Σ(A, b) =  
([–2, 2], [0, 4])T shows also the magnitude of overestimation caused by not taking into account the 
coefficient dependence. Worse still, such an overestimation can be arbitrarily large. For instance, the 
upper-left extremal point of Σ(A(p), b(p)) may be shifted arbitrarily far away to the upper left by simply 
lowering the value of the left endpoint a22  of the coefficient a22 from –1 down to –2 (which would 
amount to changing its parametric form from 3p–1 up to 4p–2). As can be easily shown, 
hull Σ(A(p), b(p)) will grow only a little during this process, hence the overestimation will grow 
indefinitely. At the limit (for a22 2= − ), the matrix A becomes singular, Σ(A, b) becomes unbounded, 
but Σ(A(p), b(p)) remains still bounded and small (namely, for a22 2= −  the hull of this set will equal 
approximately ([–0.286, 1], [0, 1.094])T ). Hence, from an initially non-singular system (obtained when 
the coefficient dependence is properly taken into account), ignoring the dependence may lead not only to 
an overestimation of the solution set, but even to a singular system with an unbounded solution set (see 
Sec. 5.3 below for further examples and discussion of this subject). 

The brute-force method for obtaining hull Σ(A(p), b(p)) would be thus to compute it directly 
according to Eq. (1) (or rather Eq. (1′)), i.e., to calculate the set of solutions to the real 
system A p x b p(~) ~ (~)=  for all combinations of values of parameters p and take its lower and upper 
bounds. Unfortunately, in practice it is impossible, as the number of combinations of parameter values is 
infinite. What we can do is only to sample this set of combinations systematically, with hope that our 
samples will fall at (or at least sufficiently near to) the values giving extremal solutions of the system. 
Such a method, which can be called sampling of parameter intervals (SPI) is certainly very inefficient, 
usable only for very small number of parameters, and of doubtful accuracy, as there is no guarantee of 
hitting the exact extremal point of the function ~( )x p . However, if this function is continuous, with 
decreasing sampling step we may approach the exact solution with an arbitrary accuracy (if only our 
computing resources would allow). Which may be still practical for assessing qualitatively the order of 



 

28 Z. Kulpa, A. Pownuk and I. Skalna

overestimation of the solution produced by coefficient dependence, especially when the number of 
parameters is small. 

There are only a few results on solving the general problem of finding interval estimates for functions, 
or linear interval systems of equations, depending on interval parameters. Jansson [10] describes the 
method working with symmetry constraint, i.e., giving interval estimates for systems with symmetric 
interval matrix A such that all real matrices considered in the definition of the solution set are also 
symmetric. That is, it gives an (outer) interval estimate for: 

 ( , ) {~ & (
~

) (
~

)
~ ~

&
~ ~ ~

}T TA b x A A A A b b A A Ax bsym∑ = ∈ = ∃ ∈ ∃ ∈ = =R n .  

Rump [31] generalised the method for any linear dependence of the system coefficients on finite 
number of interval parameters. His method gives additionally an estimate of accuracy of the obtained 
results, as it produces two estimates: a lower bound x − and an upper bound x + such that: 

x A p b p x− +⊆ ∑ ⊆hull ( ( ), ( ))lin ,  with p = (p1, p2, ..., pk). 

The above can be illustrated by a simple two-dimensional example used by Rump [31] (originated by 
Behnke). The interval matrices (original one and that in a parametric form producing a symmetric matrix) 
and various solution sets of the above system, together with estimates of the symmetric solution set 
produced by the Rump algorithm, are shown in Fig. 6. Note that he solution set for the symmetric system 
is not a polygon (two of its sides are curved). The estimates produced by the Rump algorithm are rather 
crude—the errors relative to the width of hu ll ( , )A bsym∑  fall between around 20% and more than 
30%. 

Another idea is to use global interval optimisation technique [8] to find the bounds on Σ(A(p), b(p)). 
However, it needs still considerable research to become practical for this kind of objective function.  

 

Fig. 6. A Rump-Behnke example. 
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5.2.3. Coefficients dependence effects in linear mechanical systems 

The dependence of coefficients of the system of equations on a set of parameters is a common 
phenomenon in mechanical systems. Also, in most cases there is much smaller number of interval 
parameters than the number of coefficients of the system, and many coefficients may depend on a single 
parameter. Not surprisingly, not taking this dependence into account leads to large overestimations of the 
interval solutions of the system, often too large to be practical in real-life mechanical applications (see 
discussion of the examples in Sec. 4.1). From our experience it seems to be the single most harmful 
feature constraining the use of interval methods for analysis of real mechanical systems with 
uncertainties. Hence, the investigation of this problem is possibly the most important necessity from the 
applications point of view. 

What can be gained in estimation accuracy when the coefficients dependence is properly handled can 
be shown on some of our mechanical examples. 

5.2.3.1. Coefficients dependence for the truss example 

To assess the amount of overestimation caused by coefficient dependence for our truss example of Fig. 
2 we may use the brute-force SPI method described above in Sec. 5.2.2. It can be successfully applied in 
this case as the size of the system of equations and the number of parameters is small (only one parameter 
in two cases and two parameters in the third one). The hulls of the solution set for the parametric 
formulation for this example are summarised in Table 3 below. 

Table 3. Hull Σ(A(p), b(p)): Interval results for the parametric formulation  
of the example truss problem (with 7×7 matrix, all three uncertainty cases). 

 d0 
[×10–3] 

a1a [s23 ±5%]   
[×10–3] 

wid [*]/d0 
[%] 

a1 [s23 ±10%] 
[×10–3] 

wid [*]/d0 
[%] 

a2 [s23, s34 ±5%] 
[×10–3] 

wid [*]/d0 
[%] 

d x
1  –20 –0.02 0 –0.02 0 –0.02 0 

d x
2  –2.5 [–2.58, –2.41] 7.1 [–2.66, –2.30] 14.3 [–2.67, –2.31] 14.2 

d y
2  –38.71 [–38.81, –38.63] 0.5 [–38.91, –38.55] 0.9 [–38.90, –38.54] 0.9 

d x
3  –5.0 –5.0 0 –5.0 0 –5.0 0 

d y
3  –34.14 [–34.31, –33.96] 1.0 [–34.46, –33.75] 2.1 [–34.50, –33.79] 2.1 

d x
4  –12.5 [–12.58, –12.41] 1.4 [–12.66, –12.30] 2.9 [–12.67, –12.31] 2.8 

d y
4  –19.57 [–19.66, –19.48] 0.9 [–19.73, –19.37] 1.8 [–19.74, –19.39] 1.8 

 
As can be seen from the table, the interval results are quite tight around the nominal solution d0. They 

are so small that they even cannot be adequately represented in the scale of Fig. 2b. The relative width of 
the displacement intervals is smaller than the width of the parameter interval—a situation physically 
understandable as the effects of uncertainty of a single local parameter of the truss get distributed around 
the structure. For certain displacements we can even see that they are not affected by the parameter 
uncertainty at all. 

Comparison of the above results with those in Table 1 in Sec. 4.1.2 shows how much can be gained in 
the accuracy of interval estimation of solutions of equations for mechanical structures when the 
coefficient dependence is properly taken into account. The most dramatic effect is with the a2 case (two 
uncertain parameters). While in the nonparametric formulation the set of solutions became unbounded for 
this case (hence, practically nothing useful could be said about the uncertainty of the results), here the 
uncertainties are shown to be in fact quite small. The dependence of the results on the character of the 
uncertainty is also more well-behaved: the displacement uncertainty for the doubled parameter 
uncertainty is also doubled; similarly, for ±5% uncertainty of two parameters the results are almost the 
same as for ±10% uncertainty of one parameter. 
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5.2.3.2. Coefficients dependence for the frame example 

The frame example of Sec. 4.2 leads to the system of equations given by Eq. (21). It can be easily 
solved analytically, resulting in the following formulas: 
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M Cl l l
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R C l l l l l ql
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where: 

C ql
l l l l l l

=
+ +

24

12 24 12 23 24 233 2 4
.  (26′) 

Substituting in the obtained formulas the interval values of parameters from Eq. (22) and calculating 
the interval results according to the proper rules given by Eq. (1), we get the exact interval solution to the 

problem, given by xE = hull Σ(A(p), b(p)), where p = (l12, l24, l23, q). For comparison, we also 
calculate the interval results by applying straightforwardly the rules of Eq. (2), thus obtaining the interval 
solution xI. Obviously, due to isotonicity, we must have xE ⊆  xI. The solutions are given in Table 4, 
together with the nominal solution x0 and the width of the interval results relative to the nominal solution, 
similarly as in Table 2 in Sec. 4.2.2. Let us recall that the relative width of the parameter intervals equals 
2%. 

Table 4. Interval results for analytical solution of the example frame. 

 x0 xE wid xE/x0 
[%] xI 

wid xE/x0 
[%] 

M1 0.25 [0.240, 0.261] 8.4 [0.233, 0.268] 14 

M21 –0.5 [-0.521, -0.479] 8.4 [-0.536, -0.466] 14 

M24 –1 [-1.034, -0.966] 6.8 [-1.072, -0.932] 14 

R y
1  –0.75 [-0.790, -0.712] 10.4 [-0.812, -0.692] 16 

R y
3  6.75 [6.591, 6.913] 4.8 [6.573, 6.933] 5.3 

R y
4  4 [3.920, 4.080] 4 [3.911, 4.091] 4.5 

R x
1  –0.667 [-0.702, -0.633] 10.4 [-0.722, -0.615] 16 

R x
3  0.667 [0.633, 0.702] 10.4 [0.615,0.722] 16 

Comparing solutions xE and xI we can already see the marked overestimation effects (causing 
significant widening of the estimation intervals, e.g. more than two times, relatively, for M24) that may 
result from evaluation of even quite simple interval expressions. Note that different form of formulas in 
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Eq. (26) may lead to another results of their interval evaluation. For instance, when the factor C from Eq. 
(26′) is substituted to Eq. (26) and the resulting formulas are transformed to a single fraction form, the 
overestimations of interval evaluation xI for reactions R y

3  and R y
4  rise to 16% and 12% respectively 

(other results remaining the same).  
Also, comparing Table 4 with Table 2, we can again clearly see the magnitude of overestimation that 

may occur when the coefficient dependencies in interval systems of equations are not handled properly, 
even for such a comparatively simple system. Note also that the overestimations due to this effect may be 
quite different in magnitude for different variables (compare overestimation percentages for R x

1  and R x
3  

in Table 2 with values for other unknowns). Interestingly, although for most unknowns hull Σ(A, b) is 
wider than xI (as could be expected), for M24 actually xI is wider. Obviously, xE ⊆  hull Σ(A, b) always. 

 
5.2.3.3. Solving coefficients dependence problem for mechanical structures 

As presented examples show, various types of dependencies can occur in matrices of mechanical 
systems. For some systems, we get symmetric matrices (like for trusses, see Sec. 4.1.1). For others, the 
dependence on many important design parameters is linear (like on sij, Aij, and Eij for trusses), or is linear 
for some convenient function of the design parameter (e.g., for trusses the dependence on lij is non-linear, 
but it is linear on 1/lij). Hence, the methods, described in the previous subsection, of tackling such types 
of dependence constitute a promising starting point for the development of useful algorithms. 

However, their practical usefulness in current state of the art is still limited. First, let us note that for 
truss structures the constraint of symmetry of the matrix does not capture all the dependence that there 
exists. Among others, while properly representing the equalities a aij

yx
ji
xy= and a aij

xy
ji
yx= , it does not 

capture the fact that also a aij
xy

ij
yx= , see Eqs. (19, 20). Second, while the dependency is linear on some 

parameters, say Aij and Eij, individually, in the case when both parameters are uncertain and should be 
varied independently over their separate intervals, the dependency becomes non-linear. Also, dependence 
on some design parameters is inherently non-linear, like, for trusses, dependence on bar and external load 
directions (angles). Similar observations can be made for other mechanical structures, e.g. frames (see 
Sec. 4.2). 

The above mentioned methods for handling coefficient dependency were not yet fully tested by us on 
real mechanical problems. Regardless of that, because of the known limitations of the discussed methods, 
we may safely say that further research into this area will be needed anyway. It is currently carried out by 
our group, for the particular case of analysis of linear mechanical structures, and the results will be 
reported in a separate publication. 

5.3. Inadequate development of singular systems theory and methods 

The overwhelming majority of results in solving linear interval systems of equations concerns non-
singular systems. Singular systems were mostly left out as (probably) uninteresting. At the most, methods 
for testing for singularity of interval matrices were investigated to some extent. However, in interval 
formulation the importance of singular systems is much greater than in real matrix theory and 
applications.  

First, the very process of formulating the interval form of some real-world (e.g., mechanical) problem 
may lead to a singular interval system for a quite well-behaved initial problem (see the results for the a2 
case of the example truss discussed in Sec. 4.1.2 and 5.2.3.1), just because of acknowledging a somewhat 
larger uncertainty in some parameter (recall how moving one end of a coefficient interval [–1, 2] just 
from –1 to –2 in the example of Fig. 5 had led to a singular system), or due to the coefficients 
dependence effects discussed above [8]. Here, of considerable interest is, e.g., to be able to find what 
changes in parameter uncertainties should be made to avoid producing a singular matrix, or, more 
generally, what is the position and “shape” of the set of singular matrices within the given matrix interval. 
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Some sort of an interval extension of singular value decomposition (SVD) methods developed in real 
matrix theory may be of great interest here. Again, only some preliminary steps in this direction have as 
yet been made [5]. 

Second, the interval matrix being singular means usually that only some of the real matrices included 
in it are singular—in most of the interesting cases the majority of them are non-singular. It means, for 

example, that due to the singularity of the system the general set of solutions Σ(A, b) may be unbounded 

(an extreme of overestimation!), while the parametric set Σ(A(p), b(p)) that we may be far more 
interested in, can quite well be bounded (again, compare the results for the a2 case of the example truss of 
Sec. 4.1.2 and 5.2.3.1, and see an example in Fig. 7). Hence, the methods of handling of certain types of 
solution sets also for singular matrices would be very useful in practice. 

Third, since for even non-singular interval systems we already get (usually infinite) sets of solutions, 
the boundary between sets of solutions for non-singular and singular systems is not so clear-cut as for 
non-interval systems—the difference is only that between bounded and unbounded sets. Even if 
unbounded, the shape of the set of solutions to a singular system may be of much interest, especially in 
qualitative analysis applications [6, 7, 11, 13]. For instance, the information that components of the solu-
tions to the singular system shown in Fig. 7 are of opposite sign may be very important in such a kind of 
application. Hence, methods of estimating shapes of solutions sets for singular systems may be quite 
useful in practice. As far as the authors of this paper know, practically nothing has been done in this 
direction as yet. 

 

Fig. 7. A solution set of an example singular system. 

It seems that for analysis of singular interval systems the extension of interval arithmetic called Kahan 
arithmetic [1, 18] may prove very useful. The extension considers also unbounded intervals and “outer” 
intervals. This would also add another possibility to the analysis of systems with uncertainties, as it 
allows for specification of the condition that some parameter lies outside a specified range, which is hard 
to specify with standard interval arithmetic. Some elements of this extension have already been 
successfully applied by Hansen to improve efficiency of iterative interval algorithms [8].  
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6. CONCLUSIONS 

In the paper, we have investigated possibilities of and problems with application of interval methods in 
(qualitative) analysis of linear mechanical systems with parameter uncertainties. After giving an 
introduction to interval arithmetic, systems of linear interval equations, and basic methods for finding 
interval estimates for solutions of such systems, we have shown some examples of applying interval 
methods to practical problems of analysis of mechanical structures. 

The results, on the one hand, suggest the usefulness and comparative simplicity of interval methods as 
applied to finding estimates of solutions to systems with parameter uncertainties, and, on the other hand, 
indicate that the methods must be used with proper caution. The most important lesson is that 
straightforward use of interval methods as if they were essentially identical to the arithmetic of reals, only 
with a little extended kind of “interval numbers”, may lead to considerable, and cumulative, 
overestimation of the proper results. Although, fortunately, the results are reliable (or safe) in the sense 
that the final interval result is guaranteed to include the proper set of solutions (hence, no solutions are 
missed in this way), the overestimations may still amount to such a loss of information as to render the 
result practically useless.  

For linear systems of equations the effect is called the coefficient dependence problem and provides 
the main source of overestimation of the results, as discussed in Sec. 5.2.2 and 5.2.3. Hence, proper 
formulation of the problem in interval form and careful application of interval arithmetic laws, taking into 
account their significant deviations from the familiar arithmetic on reals, is needed to alleviate these 
effects. There are also other sources of interval estimation inaccuracy, as discussed in more detail in Sec. 
5.1.  

Another problem with interval linear methods identified in the paper (Sec. 5.3) is concerned with far 
inadequate development of theory and methods of analysis of singular interval systems. This is especially 
serious because in interval formulation the practical importance of singular systems is much greater than 
in applications of standard linear systems. 

The examples and following discussions have led to identification and formulation (in Sec. 5 of the 
paper) of several important and promising avenues for further research, both of purely theoretical nature, 
and involving construction and testing of new practical interval methods and algorithms. Advances in the 
indicated research areas will considerably boost the usefulness of interval methods in the field of analysis 
of linear mechanical systems with uncertainties. 
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