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Abstract: The Finite Element Method (FEM) is one of the most popular approach to descrime
today. In order to apply this method efficiently, it is necessary to know the exact values o &
case of uncertain shapes, the FEM method leads to a parameter dependent system of al==
interval set parameters. In this paper the solutions for such equation will be presented. The
of topological derivative and monotonicity. Numerical examples will be presented.

Key—Words: Interval sets, uncertainty, interval functional parameters, finite element metas.

1 Engineering problems with the un-
certain shape

Almost all engineering problems require a very pre-
cise information about the geometry (eg. height,
thickness, curvature, coordinate of the characteristic
points of the structure etc.) of the problem. Unfor-
tunately, due to many reasons (unavoidable inaccu-
racy in the construction process, bad materials, etc.)
the real dimension of the engineering structure are not
know exactly [3. 6. 12].

Civil engineering projects are usually very
unique. Because of that it is very hard to get reliable
probabilistic characteristics of the structures. One
of the simplest methods for modeling uncertainty is
based on the intervals. If () denotes the domain of the
structure, then. due to uncertainty, we can assume that

Qe [Q,9 (1)

If u = u(x. ) is a characteristic of the structure, e.g.
displacement. then in the case of the uncertainty, in-
stead of one number we have the whole interval

[u(z).w(z)] = {u(z,Q) : Q € [Q,Q]} 2)

ISSN: 1790-Z7638

In this paper, some prooss
[u(z),u(z)] will be presemsss.
tain parameters were consicerns

2 Examples of set
tions

2.1 Center of gravity

z coordinate of the center of &=
of a set dependent function

() =5

4

M

E

2.2 Moment of inertia

Different kinds of moment = =
by using integrals, and they a4

I () = / *du, L=
Q =



S | o i L e il

of PDE or integral equations

= problems (BVP) can be described as
artial differential equations

B riu(z) = fu(z), for € 5
Wz )u(r) = fi(z), for €09 ©)

w = = fo(x) is a PDE, which is defined
w [n#(Q), and B(z)u(z) = fip(x) is a
‘= d=fined on the boundary 9. The Solu-
¥ = 2 set dependent function u = u(x, Q)

e solution of plate equation

Aw(r) = %ﬂ, for x € )
wiz) = w*(z), for z €N
scent function w = w(z, Q) (w is a
wwe out-of-plane displacement, p is a dis-
& is the bending/flexural rigidity, w* (z)
splacement at the boundary of the plate

=al definition of topological

= 2n open, bounded domain, Q@ C R"
2 smooth boundary 6). If the domain
= introducing a small hole B. of ra-
wrary point x € (2, we have new do-
. — B.. whose boundary is denoted by
2. Topological derivative of certain

= v(Q) can be defined as the follow-

R ST
=)= e

=—07t
. = = siven function, which is positive

(7

Jim f(e) = 0. ®

“=n we can use the following notation

dip

Bhlx) = aQ(z)

&)
#ric method for calculating
mcal derivative

o define topological derivative for
sy perturbations. In this case, ). is
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the arbitrary set (i.e. not necessarily Q. = Q — B,).
However Oz — Q. when 8 — 0.

() —9(Q)
Dr(z) = ‘I)J_I}})‘—Jf—w)— = (10)
U’(Qo)9—¢(9) % o)
=im—are —\¢ ) =Pr@ an
=0

[ do
In some cases, the formula (11) gives the same results
for different parameterizations ().
Let us consider a triangle ABC, where A=(0,0),
B=(1,0), C=(1+4e,1). and a function ¥y(g) =
¥1(Qe) = |Q:|?, where |Q| = (1 + €)/2 is the area
of the triangle, f(g) = |Q| — 0.5.

dioy Lte
D}:(é;) =4 =10 (12
de / e=0 2/ e=0

In this case, topological derivative can be calculated
for all parameterisations

Y1(Q) —1(Q) . |2[2-052
HO) =t e 0s T

(13)
lim Q] +0.5=[Q| +0.5=1  (14)
e—0

lim

e—0t

Let us consider the function ¥2(Q.) = yo = ¢, for
the parameterisation which was given above

diba 1
de e=0 2/ e=0

Let us consider different parameterisation of the shape
of the triangle C=(1 + ~,1). In this case, ¥2(Qy) =
yo=1

& 0
Ol = (d—}’) = (I) =0 (16)

Then 2 = D5 # D} = 0 i.e. the result depends on
the parameterisation.

In the literature, usually the concept of parameter in-
dependent topological derivative is used [3].

5 Basic formulas for -calculating
topological derivatives

5.1 Function in the form ¥(Q) = [ L(z)dz
Q
Theorem 1 Let us consider the integral in the form

Q) = / Tayis a7

Q.

ISBN: 978-960-474-150-2
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where L is a continuous function and Q@ C R™ is a
sufficiently regular set and Q2.=C) — B.. The topolog-
ical derivative of the function v in the pointy € Q is
‘equal to [4]

W@ _ d [
e Q/ L@z =Iy) (9

dQ(y)

Example

d

2 2 i ip 2
——.“dQ(.'L'l,wz) /(xl + z5)dx = x§ + x5 (19)
Q

5.2 Functions of in the form
WQ)=F (f L(x)d:c)
Q

Theorem 2 Let us consider the integral in the form

Q) =F / E(n)dz 20)

Q

where L : R™ — R is a continuous function, F :
R — R is differentiable function and Q@ C R™ is a
sufficiently regular set and Q2.=$) — B.. The topolog-
ical derivative of the function 1) in the point y € Q is
equal to

Q) _ /
=F L(x)dx | - L 21)
Q
This is a consequence of the chain rule.
Example
3 2
d 2 . 2 2
Q Q

It is important to distinguish between general param-
eterization Qg and Q.=Q — B..

Theorem 3 Let us consider the integral in the form

$(S) = / L(z,0)dz 23)
Qg

where L is a continuous function, and Q0 C R™ is a
sufficiently regular set. For the general parameteriza-
tion 0 topological derivative of the function ¥

0

d L
7 / Ldz = %dx—l- / Lvnds  (24)
Qo Q 89

ISSN: 1790-2769
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where v = % andr = r(x,0) is the
scription of the boundary 0 (v € % &
normal vector to the boundary.

This is Reynolds transport theorem [=.
Theorem 4 Let

() _—_/L(a:,s,id:
Qe
and Q.= — B, then
OL(x,
a4y :/ t’(;éO) dr + i
3|Qe
d2(y) J e

Theorem 4. can be extended =
derivative.

Theorem 5 Let

P =9(Q,) = /L(.’Z‘. Q

QE
and Q.=S) — B. then
OL(z,
d¥ :/ Lg:O)da:—L
01| |
dy) ) 2

6 Center of gravity

6.1 Topological derivative

The center of gravity (i-th coordinate !
be calculated in the following way

f:L’idI
_Q
Q

The topological derivative can be
ing quotient rule

M dr — [zl
2aC xzs{x f{.r_

7 =

" ()

The sign of the topological derivative
same like the sign of the difference

xi/da:—/rcidz.
Q Q




implicit topological derivative

==ment method lead to the following pa-
“=mendent system of equations [10].

K(Qu=Q(Q) (32)

. 1s the local stiffness matrix, QQ(€2) is the
= is the displacement vector. using, the
tion theorem, it is possible to calculate
=zl derivative of the vector u.

e dQQ)  dK(Q)
o) dQ(z) dO(z)

u(Q)  (33)

displacements in 2D elas-
»: problem with uncertain

ader the rectangular FEM element [10].
=== matrix can be defined in the following

K = / BTDBAV (34)

of the integral (34) can be calculated by
»id’s Transport Theorem.

dK

do
= B'DB)dV + a{) BTDBundv 39

% can be also calculated directly, if the
2 ==oression for K is known. It is possible to

serical differentiation e.g.

K K0+ A8)—K(6)

= 36

do A6 29)
=thatfisay coordlnate of the node 3.
‘= constant, then & d0 = 0. Matrix B is de-

\ wemz derivatives of the shape functions %N—l

=ular element the first shape function has

= form

, (l_x*m)(l_y—yl) 37)
, T2 — 1 Y2 — U1

‘ T—T1 Y=Y
= ) (1-— 38
: 12—501)( y2+9—y1) S

=(z2—z1)(y2 + 0 — 1) (39)

T=0-2769
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In order to calculate the derivative, it is necessary to

8]\

calculate 4 = ) dengl Topological derivatives

can be calculated as

d (dN
d (dNI) _ (W) 40)
dQ(z) 3619%]

In a similar way, it is possible to calculate the topo-
logical derivative of all elements of stiffness matrix.
Above described topological derivative can be used to
the calculations of extreme values of the set dependent
functions and in the modeling of uncertainty. Let us
consider the 2D plane stress FEM model from the Fig.
1 where P=1000 [N], L,=L,=1, E = 2-10'2 [L}],
v = 0.2, h=0.1 [m] (thickness). Let us consider per-

4 | P 3 | P
\ (%5, 7)
Ly
|y 2
NN RSN

L

X

Figure 1: 2D FEM problem

turbation of the region in the direction of ¥ axis. Let
us consider y displacement of the node 3 in the y di-

duy
Fi9)
calculated in the following way
3 dul®
wfp _

dQ  dQ]
do

(41)

@)
The derivative d—’;,% can be calculated form the im-
plicit function theorem.

du dQ dK
K~ aw—m" “2)

After calculations, we will get

M _ _991047-107°. (43)

ISBN: S78-360-474-150-2
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Then topological derivative

3
du§3) du?)

a0 -9 44

22— _dd _ _9.91947-10 (44)
d|Q|

a2 al]

is negative, because of that
R g gUeE— 5 (45)
then
u® = u@ @™y, 7® =y @me).  46)

For A6 = 0.1[m] extreme values of the displace-
ments are the following.

u{d) € [~1.0861 - 1078, —8.87705 - 10~7][m] (47)

The results confirm the intuition that if the region is
higher (y coordinate grows), then the absolution value
of the displacement in the y direction grows. Because
the sign of that displacement is negative, then the
function actually is decreasing and the topological
derivative is negative.

Now let us consider a model which is shown
in the Fig. 2. In calculations, the following
numerical data is considered, Young’s modulus
E € [1.98 - 10',2.02 - 10! [Pa], Poisson
ration v € [0.198,0.202] the uncertain load
P € [-1010, —990] [N1], and uncertain = coordinates
of the supports Az = 0.01 [m] (z1 € [—Az, Az],
x3 € 2L — Az,2L + Az]), L=10[m], H=L =1
[m], thickness w=0.01 [m]. In calculations 6 rectan-
gular FEM elements were applied. Interval von Mises

Figure 2: FEM model in ANSYS

stress are shown on the Fig. 3. Maximum von Mises
stress is shown on the Fig. 4. Calculation was done by
using special gradient free optimization method [11].
The appropriate software can be downloaded from

ISSN: 1790-2769 314
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Figure 3: Interval von Misss

Figure 4: Maximum von Mises ¢

the authors web page http://andrz=.
On the same web page, it is possibiz
applications which automatically gen==
for the calculations. The program was
in C++ language and can be run o=
Linux.

9 Truss with uncertain ge

Let us consider 11 bar truss [10]. ==
on the Fig. 5 with the uncertain Youms
E € [1.98 - 10'1,2.02 - 10!!] [Pal
P € [-15150,—14850] [V], and umes
dinates of the nodes 1 and 3 Az = 0 &
[-Az,Az], z3 € [2L — Az,2L + Az o
H = 5 [m], area of cross-section ~="
Interval displacements are shown in the T8

ISBN: 978-960-<=7%
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Figure 5: 11 bar truss

. Jmerval displacement of the truss with uncer-

-

Lower bound [m] | Upper bound [m]
-2.883822e-005 2.886680e-005
-1.526831e-002 | -1.463698e-002
-7.216225e-005 7.214392e-005

- -1.296921e-002 | -1.239865e-002

clusions

=w=d concept of topological derivative can
i the efficient and large scale HPC com-
The equation (33) can be used in the frame-
SEML FVM or BEM method. The algorithm
“im= of uncertainty is the same as in the case
[1] and functional parameters [2]. The
.« z=neral, can be applied to the modeling a

===y of problems in computational science.
2= of the theory which was presented in this
=meral interval FEM program, which will be
uncertainty of problems with interval,
merval and set interval parameters will be
. That will be a topic of future research. A
=val FEM program which is uses interval
= can be downloaded from the the authors
“mpi//andrzej.pownuk.com). Several work-
which are related to the Interval Finite
also presented on that web page.
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