
erical investigation,

tlath. Anal. Appl.,

:, Methods, Experi-

in Using Canonical
.pproximately Mod
)nment", Robotica,

From Interval Computations to
Constraint-Related Set Computations: Towards
Faster Estimation of Statistics and ODEs Under

Interval, p-Box, and Fuzzy Uncertainty

Martine Ceberiol, Vladik Kreinovich 1, Andrzej Pownuk2, and Barnabas Bede2

1 Department of Computer Science, University of Texas at EI Paso,
EI Paso, TX 79968, USA

mceberio@cs.utep.edu, vladik@utep.edu

2 Department of Mathematical Sciences, University of Texas at El Paso,
EI Paso, TX 79968, USA

ampownuk@utep.edu, bbede@utep.edu

Abstract. In interval computations, at each intermediate stage of the
computation, we have intervals of possible values of the corresponding
quantities. In our previous papers, we proposed an extension of this tech
nique to set computations, where on each stage, in addition to intervals
of possible values of the quantities, we also keep sets of possible values
of pairs (triples, etc.). In this paper, we show that in several practical
problems, such as estimating statistics (variancp., correlation, etc.) and
solutions to ordinary differential equations (ODEs) with given accuracy,
this new formalism enables us to find estimates in feasible (polynomial)
time.

1 Formulation of the Problem

Need for data processing. In many real-life situations, we are interested in the
value of a physical quantity y that is difficult or impossible to measure directly.
Examples of such quantities are the distance to a star and the amount of oil in
a given well. Since we cannot measure y directly, a natural idea is to measure
y indirectly. Specifically, we find some easier-to-measure quantities Xl,···, xn
which are related to y by a known relation y = f (Xl, ... , Xn) j this relation may
be a simple functional transformation, or complex algorithm (e.g., for the amount
of oil, numerical solution to a partial differential equation). Then, to estimate
y, we first measure or estimate the values of the quantities Xl, ... , Xn, and then
we use the results Xl, ... , xn of these measurements (estimations) to compute
an estimate y for y as fi = f(Xl, ... , Xn) .

Computing an estimate for y based on the results of direct measurements is
called data processing; data processing is the main reason why computers were
invented in the first place, and data processing is still one of the main uses of
computers as number crunching devices.

P. Melin et al. (Eds.): IFSA 2007. LNAI 4529. pp. 33-42, 2007.
© Springer-Verlag Berlin Heidelberg 2007

34 M. Ceberio et al. From lnt

Measurement uncertainty: from probabilities to intervals. Measurement are never
100% accurate, so in reality, the actual value Xi of i-th measured quantity can
differ from the measurement result Xi. Because of these measurement errors

A clef - h I - f C -) f d .. , IL.J.Xi = Xi - Xi, t e resu t y = Xl, ... , Xn 0 ata processmg IS, m genera,
different from the actual value y = f(xl,"" xn) of the desired quantity y.

It is desirable to describe the error L1y ~f if - y of the result of data pro
cessing. To do that, we must have some information about the errors of direct
measurements.

What do we know about the errors L1Xi of direct measurements? First, the
manufacturer of the measuring instrument must supply us with an upper bound
L1i on the measurement error. If no such upper bound is supplied, this means
that no accuracy is guaranteed, and the corresponding "measuring instrument"
is practically useless. In this case, once we performed a measurement and got
a measurement result Xi, we know that the actual (unknown) value Xi of the
measured quantity belongs to the interval Xi = [~i' Xi], where ~i = Xi - L1i and
Xi = Xi + L1i·

In many practical situations, we not only know the interval [-L1i, L1i] of pos
sible values of the measurement error; we also know the probability of different
values L1Xi within this interval. This knowledge underlies the traditional engi
neering approach to estimating the error of indirect measurement, in which we
assume that we know the probability distributions for measurement errors L1xi'

In practice, we can determine the desired probabilities of different values of
L1xi by comparing the results of measuring with this instrument with the results
of measuring the same quantity by a standard (much more accurate) measuring
instrument. Since the standard measuring instrument is much more accurate
than the one use, the difference between these two measurement results is prac
tically equal to the measurement error; thus, the empirical distribution of this
difference is close to the desired probability distribution for measurement error.
There are two cases., however, when this determination is not done:

- First is the case of cutting-edge measurements, e.g., measurements in fun
damental science. When we use the largest particle accelerator to measure
the properties of elementary particles, there is no "standard" (much more
accurate) located nearby that we can use for calibration: our accelerator is
the best we have.

- The second case is the case of measurements in manufacturing. In principle,

every sensor can be thoroughly calibrated, but sensor calibration is so costly
- usually costing ten times more than the sensor itself - that manufacturers
rarely do it.

In both cases, we have no information about the probabilities of L1Xi; the only
information we have is the upper bound on the measurement error.

In this case, after we performed a measurement and got a measurement result
Xi, the only information that we have about the actual value Xi of the measured
quantity is that it belongs to the interval Xi = [Xi-L1i, Xi+L1i]. In such situations,
the only information that we have about the (unknown) actual value of y =

f(;1:1, ... , xn) iE

box Xl X ... X

The process
is called intervl

Case of fuzzy 1

usually describt
like "most prob
(,his knowledge
designed for de:

In fuzzy set 1

set, i.e., by a ft
quantity, the e:x
(~analso be des.

Zadeh's extel

fuzzy set for y.]
this principle is
III other words,
I,orvalcomputa1

In view of th

Interval compu1

Outline. We stc
their drawback~
doscribe a class
t.II.1kabout how

(o.p;., classes of

2 Interval

Inte'rval compU1
(,ho enclosure fc
forward" interv
t.ho computer, e
(lrlttions, min, n
Int.orvals a and
('OITospondingf

[a.a-!

[g,a]· [~

1/ [g, a

tSurement are never

sured quantity can
leasurement errors

:sing is, in general,
ed quantity y.

result of data pro
;he errors of direct

ements? First, the
~han upper bound
pplied, this means
:uring instrument"
tSurement and got
n) value Xi of the
.;fi = Xi - L1i and

I (-L1i,.:1i] of pos
ability of different
~ traditional engi
nent, in which we
ement errors .:1Xi.
:lifferent values of
It with the results

:urate) measuring
~h more accurate

nt results is prac
stribution of this
~asurement error.
done:

urements in fun
rator to measure

Lrd" (much more
mr accelerator is

ing. In principle,
ation is so costly
Ltmanufacturers

of .:1xi; the only
rror.
}Surement result
of the measured
.such situations,
al value of y =

From Interval Computations to Constraint-Related Set Computations 35

f (Xl, ... , xn) is that y belongs to the range y = [y, y] of the function f over the
box Xl X ... X Xn: -

The process of computing this interval range based on the input intervals Xi

is called interval computations; see, e.g., {4].

Case of fuzzy uncertainty and its reduction to interval uncertainty. An expert
usually describes his/her uncertainty by using words from the natural language,
like "most probably, the value of the quantity is between 3 and 4" . To formalize
this knowledge, it is natural to use fuzzy set theory, a formalism specifically
designed for describing this type of informal ("fuzzy") knowledge [5].

In fuzzy set theory, the expert's uncertainty about Xi is described by a fuzzy
set, Le., by a function f..Li(Xi) which assign, to each possible value Xi of the i-th
quantity, the expert's degree of certainty that Xi is a possible value. A fuzzy set

can also be described as a nested family of a-cuts Xi (a) ~f {Xi I f..Li(Xi) > a}.
Zadeh's extension principle can be used to transform the fuzzy sets for Xi into a

fuzzy set for y. It is known that for continuous functions f on a bounded domain,
this principle is equivalent to saying that for every a, yea) = f(XI (a), ... , xn(a)).
In other words, fuzzy data processing can be implemented as layer-by-Iayer in
terval computations.

In view of this reduction, in the following text, we will mainly concentrate on
interval computations.

Outline. We start by recalling the basic techniques of interval computations and
their drawbacks, then we will describe the new set computation techniques and
describe a class of problems for which these techniques are efficient. Finally, we
talk about how we can extend these techniques to other types of uncertainty
(e.g., classes of probability distributions).

2 Interval Computations: Brief Reminder

Interval computations: main idea. Historically the first method for computing
the enclosure for the range is the method which is sometimes called "straight
forward" interval computations. This method is based on the fact that inside
the computer, every algorithm consists of elementary operations (arithmetic op
erations, min, max, etc.). For each elementary operation f(a, b), if we know the
intervals a and b for a and b, we can compute the exact range f(a, b). The
corresponding formulas form the so-called interval arithmetic:

[g,a] + [Q, b] = [g + Q, a +b]; [g,a] - [Q,b] = [g - b, a - Q];

[g,a]· [Q, b] = [min(g· Q,g. b,a· Q,a· b),max(g· Q,g. b,a· Q,a· b)];

l/[g, a] = [l/a, l/g] if 0 ¢ [g,a]; [g,a]/[Q, b] = [g,a] . (l/[Q, b]).

3 Constraint-Based Set Computations

the desired ran

nxactly [0,0.25]
T'o the best

n~presenting de
,Iuscribed by Sl

How can we
d"Hcribe this OJ

111'10 two previOl
;f, + ;1:j. In this
,rj) I (Xi,Xj) E Ji

Xkl = {

From Int,

l"rom main ide£

w(! cannot repn
i'll/sure. Similar
111'Oe! an enclosu

To describe E

Wn divide each;
11I1.l/C2 subbox(

Xi x Xj which
IUt (:nclosure for

rl 'his implem€
1"1 II' example, to
,.\lhhoxes Xi x)
1,\10 correspondi
Xi x (Xi +Xj).
X, x Xk; all th(
(~nllou,silysee if
fo/' X'ik is an (1/
Wo JJ;nf; more ani

Similarly, to :

Wo consider all t

X I x X, ~ Xil,

(Xi + Xj) x Xl
t·!! the onclosure

1,IIIIUnl:ions of t,
Wf! 11/10<1~ln aCCl

tlln 1'0/'11111; with,
",ic Inl' exponenti1
npplic:nble when
(,I,/,(" 10%).

M. Ceberio et al.36

In straightforward interval computations, we repeat the computations forming
the program f step-by-step, replacing each operation with real numbers by the
corresponding operation of interval arithmetic. It is known that, as a result, we
get an enclosure Y ;2 y for the desired range.

From mainidea't'o actual computer implementation. Not every real number can be
exactly implemented in a computer; thus, e.g., after implementing an operation of
interval arithmetic, we must enclose the result [1'-,1'+] in a computer-representable
interval: namely, we must romid-off r""'to a smaller computer-representable value
r.,and round-off 1'+ to a larger computer-representable value r.

Sometimes, we get excess width. In some cases, the resulting enclosure is exact;
in other cases, the enclosure has excess width. The excess width is inevitable
since straightforward interval computations increase the computation time by
at most a factor of 4, while computing the exact range is, in general, NP-hard

1 n
[6], even for computing the population variance V = - . I::(Xi - x?, where

n i=l
n

X = ~ . I:: Xi [3]. If we get excess width, then we can use more sophisticated
n i=l

techniques to get a better estimate, such as centered form, bisection, etc. [4].

Reason for excess width. The main reason for excess width is that intermediate
results are dependent on each other, and straightforward interval computations
ignore this dependence. For example, the actual range of f(xI) = Xl - xi over
Xl = [0,1] is y = [0,0.25}. Computing this f means that we first compute
X2 := xi and then subtract X2 from Xl' According to straightforward interval
computations, we compute r = [0,1]2 = [0,1] and then Xl - X2 = [0,1] - [0, 1] =
[-1,1]. This excess width comes from the fact that the formula for interval
s.ubtraction implicitly assumes that both a and b can take arbitrary values within
the corres.ponding intervals. a and b, while in this. case, the values of Xl and X2

are clearly not independent: X2 is uniquely determined by Xl, as X2 = xi.

Main idea. The main idea behind constraint-based set computations (see, e.g.,
[1]) is to remedy the above reason why interval computations lead to excess
width. Specifically, at every stage of the computations, in addition to keeping
the intervals Xi of possible values of all intermediate quantities Xi, we also keep
several sets:

- sets Xij of possible values of pairs (Xi, X j);
- if needed, sets Xijk of possible values of triples (Xi, Xj, Xk); etc.

In the above example, instead of just keeping two intervals Xl = X2 = [0,1], we
would then also generate and keep the set Xl2 = {(xI,xi)lxI E [0, I]}. Then,

mputations forming
real numbers by the
that, as a result, we

y real number can be
Iting an operation of
Iputer-representable
'-representable value
f.

g enclosure is exact;
width is inevitable

)mputation time by
in general, NP-hardn

I)Xi - x?, where
i=l

, more sophisticated

bisection, etc. [4].

is that intermediate

terval computations
(Xl) = Xl - xi over
Lt we first compute
ightforward interval
X2 = [0,1] - [0,1] =
formula for interval
>itrary values within
values of Xl and X2

'I, as X2 = xi·

putations (see, e.g.,
;ions lead to excess
addition to keeping
jies xi, we also keep

II;); etc.

Xl = x2 = [0,1], we
I Xl E [0, In. Then,

I
I

I
f

Ai
I

From Interval Computations to Constraint-Related Set Computations 37

the desired range is computed as the range of Xl - X2 over this set - which is
exactly [0,0.25].

To the best of our knowledge, in interval computations context, the idea of
representing dependence in terms of sets of possible values of tuples was first
described by Shary; see, e.g., [7] and references therein.

How can we propagate this set uncertainty via arithmetic operations? Let us
describe this on the example of addition, when, in the computation of f, we
use two previously computed values Xi and Xj to compute a new value Xk :=
Xi + Xj. In this case, we set Xik = {(Xi, Xi + Xj) I (Xi, Xj) E Xij}., Xjk = {(Xj, Xi +
Xj) I (Xi,Xj) E Xij}, and for every l =1= i,j, we take

Prom main idea to actual computer implementation. In interval computations,
we cannot represent an arbitrary interval inside the computer, we need an en:"
closure. Similarly, we cannot represent an arbitrary set inside a computer, we
need an enclosure.

To describe such enclosures, we fix the number 0 of granules (e.g., 0 = 10).
We divide each interval Xi into 0 equal parts Xi; thus each box Xi X Xj is divided
into 02 subboxes Xi x Xj. We then describe each set Xij by listing all sub boxes
Xi x Xj which have common elements with Xij; the union of such subboxes is
an enclosure for the desired set Xij.

This implementation enables us to implement all above arithmetic operations.
For example, to implement Xik = {(Xi, Xi + Xj) I (Xi,Xj) E Xij}, we take all the
subboxes Xi x Xj that form the set Xij; for each of these subboxes, we enclosure
the corresponding set of pairs {(Xi, Xi + Xj) I (Xi, Xj) E Xi X Xj} into a set
Xi x (Xi +Xj). This set may have non-empty intersection with several subboxes
Xi x Xk; all these sub boxes are added to the computed enclosure for Xik. Once
can easily see if we start with the exact range Xij, then the resulting enclosure
for Xik is an (1/0)-approximation to the actual set - and so when 0 increases,
we get more and more accurate representations of the desired set.

Similarly, to find an enclosure for

we consider all the triples of subintervals (Xi, Xj, XL) for which Xi x Xj ~ Xij,
Xi X Xl ~ Xil, and Xj x Xl ~ Xjl; for each such triple, we compute the box
(Xi + Xj) x Xl; then, we add subboxes Xk x Xl which intersect with this box
to the enclosure for Xkl.

Limitations of this approach. The main limitation of this approach is that when
we need an accuracy e:, we must use'" lie: granules; so, if we want to compute
the result with k digits of accuracy, Le., with accuracy e: = lO-k, we must con
sider exponentially many boxes ('" 10k). In plain words, this method is only
applicable when we want to know the desired quantity with a given accuracy
(e.g., 10%).

38 M. Ceberio et al. From Int.

Cases when this approach is applicable. In practice, there are many problems
when it is sufficient to compute a quantity with a given accuracy: e.g., when
we detect an outlier, we usually do not need to know the variance with a high
accuracy, an accuracy of 10% is more than enough.

Let us describe the case when interval computations do not lead to the exact
range, but set computations do - of course, the range is "exact" modulo accuracy
of the actual computer implementations of these sets.

Example: estimating variance under interval uncertainty. Suppose that we know
the intervals Xl, ... , Xn of possible values of Xl, ... , Xn, and we need to compute

. 1 1 2 def n 2 def n
the range of the varIance V = -. M - 2' E , where M = L: Xi and E = L: Xi.n n i=l i=l

A natural way to to compute V is to compute the intermediate sums Mk ~
k k

L: xt and Ek ~f L: Xi. We start with Mo = Eo = 0; once we know the pair
i=l i=l
(Mk, Ek), we compute (Mk+1' EkH) = (Mk +x~H' Ek +xk+d. Since the values
of Mk and Ek only depend on Xl, ... , Xk and do not depend on XkH, we can
conclude that if (Mk, Ek) is a possible value of the pair and XkH is a possi
ble value of this variable, then (Mk + x~H' Ek + XkH) if a possible value of
(Mk+l, Ek+1)' So, the set Po of possible values of (Mo, Eo) is the single point
(0,0); once we know the set Pk of possible values of (Mk, Ek), we can compute
Pk+1 as {(Mk + x2, Ek + x) I (Mk, Ek) E Pk, X E xk+d. For k = n, we will get
the set Pn of possible values of (M, E); based on this set, we can then find the

exact range of the variance V = .!. . M - ~ . E2•n n
What C should we choose to get the results with an accuracy E • V? On each

step, we add the uncertainty of l/C; to, after n steps, we add the inaccuracy of
n/C. Thus, to get the accuracy n/C ~ E, we must choose C = n/E.

What is the running time of the resulting algorithm? We have n steps; on each
step, we need to analyze C3 combinations of subintervals for Ek, Mk, and XkH'
Thus, overall, we need n· C3 steps, Le., n4/E3 steps. For fixed accuracy C rv n,

so we need O(n4) steps - a polynomial time, and for E = 1/10, the coefficient at
n4 is still 103 - quite feasible.

Comment. When the accuracy increases E = 10-\ we get an exponential in
crease in running time - but this is OK since, as we have mentioned, the problem
of computing variance under interval uncertainty is, in general, NP-hard .

Other statistical characteristics. Similar algorithms can be presented for comput
ing many other statistical characteristics. For example, for every integer d > 2,n

the corresponding higher-order central moment Cd = .!. . L(Xi - x}d is a linear
n i=l

n .
combination of d moments M(j) ~f L: x1 for j = 1, ... , d; thus, to find the exact

i=l
range for Cd, we can keep, for each k, the set of possible values of d-dimensional

Another exa:

compute covaril
k

(" dof '\''A' = L. xi . y.
i=l

I'Itnge of

wo must consid(

/Iud Yk+1 - to tl
nfl,

Similarly, to '

tho values of (C

lIooded to comf
I/. ' C7 rv n8.

1~'1IHtemsof ordi1
~tJt1oralsystem c
tlllcortainty usu
Iwow the expre~
Oil these paramc

There are t\\
1,111'1'1 whose valu.

IJ/l.l'funeterswhc
WII"yH within gh
f/(;I:I" .• ,xm,t,
k t lOW the interv.

1I,':I:mn]Jle. For e:
j, Ito bounds f. aJ-2

,I:", I,), where Ii

.I.,'/llo'in,q systems
Ilthl.l,y. For the;
.\1) = :r;i(t)+L1t
IIry /', we keep th
IIHHl we can use
Iii 1Mtuple at thE

Tho reason fa

Vn.IIIOH b.i (t - L1t

re many problems
curacy: e.g., when
riance with a high

t lead to the exact

" modulo accuracy

'pose that we know
re need to compute

2 clef n
Xi and E = LXi.

i=l

d· M clef; late sums k =

we know the pair

d. Since the values
d on Xk+l, we can
LdXkH is a possi
a possible value of
is the single point

:), we can compute
k = n, we will get

; can then find the

'acy c . V? On each
:l the inaccuracy of
=n/c.
we n steps; on each
Ek, Mk, and XkH'
~daccuracy C rv n,
0, the coefficient at

an exponential in
joned, the problem
'aI, NP-hard.

;sented for comput
very integer d > 2,

(Xi - x)d is a linear

IS, to find the exact

es of d-dimensional

From Interval Computations to Constraint-Related Set Computations 39

I (M(l) M(d») h M(j) clef ~ j D h . dtup es k' ... , k , were k = L...., Xi' ror t ese computatIOns, we nee
i=l

n· CMl rv nd+2 steps - still a polynomial time.
1 n 1 n n

Another example is covariance C = ;;: . LXi' Yi - n2 • LXi' L Vi. To
i=l i=l i=l

compute covariance, we need to keep the values ofthe triples (Ck, Xk, Yk), where
clef k clef k clef k

Ck = LXi' Vi, Xk = 2::Xi, and Yk = L Vi. At each step, to compute the
i=l i=l i=l

range of

we must consider all possible combinations of subintervals for Ck, Xk, Yk, XkH,
and YkH - to the total of C5. Thus, we can compute covariance in time n· C5 rv
n6•

Similarly, to compute correlation p = C/ JVx . Vy, we can update, for each k,

{ (2) (2) (2) ~ 2 (2) ~ 2the values of Ck, Xk, Yk, Xk 'Yk), where Xk = L...., Xi and Yk = L...., Yi are
i=l i=l

needed to compute the variances Vx and Vy• These computations require time
n . C7 rv n8.

Systems of ordinary differential equations (ODEs) under interval uncertainty. A
general system of ODEs has the form Xi = !i(Xl,"" Xm, t), 1 :::;i :::;m. Interval
uncertainty usually means that the exact functions !i are unknown, we only
know the expressions of !i in terms of parameters, and we have interval bounds
on these parameters.

There are two types of interval uncertainty: we may have global parame
ters whose values are the same for all moments t, and we may have noise-like
parameters whose values may different at different moments of time - but al
ways within given intervals. In general, we have a system of the type Xi =
fi(Xt, ... ,Xm, t, al,· .. , ak, bl(t), ... ,bl(t)), where !i is a known function, and we
know the intervals aj and bj(t) of possible values of ai and bj(t).

Example. For example, the case of a differential inequality when we only know
the bounds f. and lion !i can be described as h(xl,' .. , Xn, t)+ bl (t) .Ll(xt, ... ,-z

- clef - -

Xn, t), where fi = (I. + fi)/2, Ll(t) = (Ii - f.)/2, and bl(t) = [-1,1].-z -z

Solving systems of ordinary differential equations (ODEs) under interval uncer

tainty. For the general system of ODEs, Euler's equations take the form Xi(t +
Llt) = Xi (t)+Llt'!i (Xl (t), ... ,Xm (t), t, at, ... ,ak, bl (t), ... , bl(t)). Thus, iffor ev
ery t, we keep the set of all possible values of a tuple (Xl (t), ... , xm(t), al, ... , ak),
then we can use the Euler's equations to get the exact set of possible values of
this tuple at the next moment of time.

The reason for exactness is that the values Xi(t) depend only on the previous
values bj(t - Llt), bj(t - 2Llt), etc., and not on the current values bj(t).

40 M. Ceberio et al. From II

To predict the values Xi (T) at a moment T, we need n = T l.1t iterations.
To update the values, we need to consider all possible combinations of m+k+l

variables Xl (t), ... , xm(t), al, ... ,ak, bl (t), ... , bz(t); so, to predict the values at
moment T = n· .1t in the future for a given accuracy c > 0, we need the running
time n· om+k+l rv nk+l+m+l. This is is still polynomial in n.

Other possible cases when our approach is efficient. Similar computations can
be performed in other cases when we have an iterative process where a fixed
finite number of variables is constantly updated ..

In such problems, there is an additional factor which speeds up computations.
Indeed, in the modern computers, fetching a value from the memory, in general,
takes much longer than performing an arithmetic operation. To decrease this time,
computers have a hierarchy of memories - from registers from which the access
is the fastest, to cash memory (second fastest), etc. Thus, to take full use of the
speed of modern processors, we must try our best to keep all the intermediate
results in the registers. In the problems in which, at each moment of time, we can
only keep (and update) a small current values of the values, we can store all these
values in the registers - and thus, get very fast computations (only the input values
Xl, ... , Xn need to be fetched from slower-to-access memory locations).

Comment. The discrete version of the class of problems when we have an iter
ative process where a fixed finite number of variables is constantly updated is
described in [8], where efficient algorithms are proposed for solving these discrete
problems - such as propositionaL satisfiability. The use of this idea for interval
computations was first described in Chapter 12 of [6].

Additional advantage of our technique: possibility to take constraints into ac

count. Traditional formulations of the interval computation problems assume
that we can have arbitrary tuples (x!, ... , xn) as long as Xi E Xi for all i. In
practice, we may have additional constraints on Xi. For example, we may know
that Xi are observations of a smoothly changing signal at consequent moments
of time; in this case, we know that IXi - xi+ll ::; c for some small known c > O.

Such constraints are easy to take into account in our approach.
For example, if know that Xi = [-1,1] for all i and we want to estimate the

value of a high-frequency Fourier coefficient f = Xl - X2 + X3 - X4 + ... - X2n,

then usual interval computations lead to en enclosure [- 2n, 2n}, while, for small
10, the actual range for the sum (Xl - X2) + (X3 - X4) + ... where each of n

differences is bounded by 10, is much narrower: [-n . c, n . EJ (and for Xi = i .10,

these bounds are actually attained).
Computation of f means computing the values ik = Xl - X2 +...+(-1)k+l. Xk

for k = 1, ... At each stage, we keep the set Sk of possible values of (ik, Xk), and
use this set to find

Sk+1 = {(ik + (_l)k . Xk+l, xk+d I Uk, Xk) E Sk & IXk - xk+11 ::; E}.

In this approach, when computing 12k, we take into account that the value X2k

must be E-close to the value Xk and thus, that we only add::; c. Thus, our
approach leads to almost exact bounds - modulo implementation accuracy 1/C.

In this sim]
gramming to
linear problen

4 Possibl
Probat

Classes of pro
to the interval
mation about
ity distributio
Fi(z) = Probe
of a single cdf

A practicall
each z, insteac
of possible val
box, or a p-box

Propagating p

classes Fi of :
f(xI, ... ,xn),

butions for y =

Idea. For prot
for all t, the se

From idea to co

some accuracy
describe a distl

probability (p-)

p-granules are
which assign, t,

A general cl:
There are finit

number of pOSt
We know he

amount of p-b
computing the

For p-boxes, WI

mally, the abo'
beyond very SD
needed 02 or C

To describe
to each of C x·
8ubboxes. For (
time.

: T/ L1t iterations.
binations of m+k+l
)redict the values at

we need the running
n.

~r computations can
ocess where a fixed

:is up computations.
memory, in general,
'0 decrease this time,
1m which the access
, take full use of the
3.11 the intermediate

nent of time, we can
re can store all these

lilly the input values

ocations) .

en we have an iter

lstantly updated is
lIving these discrete
lis idea for interval

:onstraints into ac

1 problems assume
i E Xi for all i. In
nple, we may know
Insequent moments
,mall known c > O.

ch.
mt to estimate the

3 - X4 + ... - X2n,

n], while, for small
. where each of n
(and for Xi = i .c,

+ ... +(-l)k+I'Xk

les of Uk, Xk), and

. XkHI ~ c}.

that the value X2k

.d ~ c. Thus, our
;ion accuracy l/C.

From Interval Computations to Constraint-Related Set Computations 41

In this simplified example, the problem is linear, so we could use linear pro
gramming to get the exact range, but set computations work for similar non
linear problems as well.

4 Possible Extension to p-Boxes and Classes of
Probability Distributions

ClaSSESof probability distributions and p-boxes: a reminder. Often, in addition
to the interval Xi of possible values of the inputs Xi, we also have partial infor
mation about the probabilities of different values Xi E Xi. An exact probabil
ity distribution can be described, e.g., by its cumulative distribution function
Fi(z) = Prob(xi ~ z). In these terms, a partial information means that instead
of a single cdf, we have a class F of possible cdfs.

A practically important particular case of this partial information is when, for

each z, instead of the exact value F(z), we know an interval F(z) = {F(z), F(z)]

of possible values of F(z); such an "interval-valued" cdf is called a probability
box, or a p-box, for short; see, e.g., f2J.

Propagating p-box uncertainty via computations: a problem. Once we know the
classes Fi of possible distributions for Xi, and a data processing algorithms
f(xI" .. ,Xn), we would like to know the class F of possible resulting distri
butions for y = f(xl, ... , xn).

Idea. For problems like syst€ms of ODES, it is sufficient to keep, and update,
for all t, th€ set of possible joint distributions for th€ tuple (Xl (t), ... , aI, ...).

From idea to computer implementation. We would like to estimate the values with
some accuracy c rv l/e and the probabilities with the similar accuracy l/e. To
describe a distribution with this uncertainty, we divide both the x-range and the
probability (p-) range into e granules, and then describe, for each x-granule, which
p-granules are covered. Thus, we enclose this set into a finite union of p-boxes
which assign, to each of x-granules, a finite union of p-granule intervals.

A general class of distributions can be enclosed in the union of such p-boxes.
There are finitely many such assignments, so, for a fixed e, we get a finite
number of possible elements in the enclosure.

We know how to propagate uncertainty via simple operations with a finite
amount of p-boxes [2], so for ODEs we get a polynomial-time algorithm for
computing the resulting p-box for y.

For p-boxes, we need further improvements to make this method practical. For
mally, the above method is polynomial-time. However, it is not yet practical
beyond very small values of e. Indeed, in the case of interval uncertainty, we
needed e2 or e3 subboxes. This amount is quite feasible even for e = 10.

To describe a p-subbox, we need to attach one of e probability granules
to each of e x-granules; these are rv eC such attachments, so we need rv eC
subboxes. For e = 10, we already get an unrealistic 1010 increase in computation
time.

42 M. Ceberio et al.

Acknowledgments. Thanks to NSF grants EAR-0225670 and DMS-0532645
and Texas Dept. of Transportation grant No. 0-5453. Many thanks to anonymous
referees and to Sergey P. Shary for valuable suggestions.

References

1. M. Ceberio et aI., "How To Take Into Account Dependence Between the Inputs:
From Interval Computations to Constraint-Related Set Computations", Proc. 2nd
Int'l Workshop on Reliable Engineering Computing, Savannah, Georgia, February
22-24, 2006, pp. 127-154; final version in Journal of Uncertain Systems, 2007, Vol.
1, No.1 (to appear).

2. S. Ferson. RAMAS Risk Calc 4.0. CRC Press, Boca Raton, Florida, 2002.
3. S. Ferson et aI., "Computing Variance for Interval Data is NP-Hard", ACM SIGACT

News, 2002, Vol. 33, No.2, pp. 108-118.
4. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis, Springer,

London, 2001.
5. G. Klir and B. Yuan, Fuzzy sets and fuzzy logic: theory and applications. Prentice

Hall, Upper Saddle River, New Jersey, 1995.
6. V. Kreinovich et aI., Computational complexity and feasibility of data processing and

interval computations, Kluwer, Dordrecht, 1997.
7. S. P. Shary, "Solving tied interval linear systems", Siberian Journal of Numerical

Mathematics, 2004, Vol. 7, No.4, pp. 363-376 (in Russian).
8. P. Yu. Suvorov, "On the recognition of the tautological nature of propositional

formulas", J. Sov. Math., 1980, Vol. 14, 1556-1562.

Non-c(

Logic (
Measure

1 Dept. oj

2 Dept. of Com)

Abstrad
val logics
hout [1] [~
interval s)
fifth in th,
in which
paper we
implicatio
Bandler a
implicatio
mutative ~
of transfOJ
group S2X

1 Introdu(

'rhe major then
emU). implicatiOJ
by the group tn
uludes the well-k

la'li{)Ositive.It g.
uf the 16 eleme:

eomrnutativity (
SI)cl,!on 2.2 deah

i'wl'l b08 the syste:
of I.his interval s

1.1 Interval}

J tI 1079 Bandler

~'U'ht(1lples based

fi,M'Jlln t1t al. (Eds.!; ,~"l'In~OI'.Vcriag E

Patricia Melin Oscar Castillo

Luis T. Aguilar Janusz Kacprzyk
Witold Pedrycz (Eds.)

Foundations
of Fuzzy Logic
and Soft Computing

12th International Fuzzy Systems Association
World Congress, IFSA 2007
Cancun, Mexico, June 18-21, 2007
Proceedings

~ Springer

