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 Abstract – In this paper a method of designing a structure 
with interval parameters and fuzzy set parameters is presented. 
This paper also outlines a procedure for designing a structure 
with random set parameters. All procedures use solutions of the 
interval equations which are based on the earlier works of both 
authors. Safety of the structures is determined by using interval 
limit state equations. 
 

I. DESIGN OF STRUCTURS WITH INTERVAL PARAMETERS 

 According to the civil engineering codes (e.g. Eurocode 
[1], Load and Resistance Factor Design [2] or [11]) the 
structure is safe if satisfy the limit state conditions. The 
equations of the limit state may have the following form 
 

 ( )L Q TR D L Q Tϕ α ψγ α α α> + + + .     (1) 
 

where φ is resistance factor, ψ is load Combination factor,       
γ is importance factor, αD is dead load factor, αL is live load 
factor, αQ is earthquake load factor, αT is thermal effect 
(temperature) load factor. In mechanical engineering some 
other safety such as von Mises, Drucker-Prager, Tresca or 
William Warke criteria can be applied [3]. In general the 
structure is safe if  
 

 ( , ) 0g x p ≥ . (2) 
 

where is ( , )g x p some function which describes the limit state, 
x is special variable and p is a vector of parameters. von 
Misses criteria with interval parameters was discussed in the 
paper [4]. 

II. TENSION-COMPRESSION OF STRUCTURS WITH INTERVAL 
PARAMETERS 

In the case of bar under tension the structure is safe if the 
stress ( )xσ  (where [0, ]x L∈ ) in the bar is smaller by some 
allowable stress Tσ  in tension 
 

 Tσ σ≤    ⇔    t
N
A

σ≤  (3) 
 

where N  is an axial force, x is space coordinate and A  is an 
area of cross-section. If the structure contains interval 
parameters (e.g. area of cross-section, Young modulus, forces, 

geometrical dimensions) 1( ,..., )mp p p=  then the structure is 
safe if 
 

 ( ), tx pσ σ≤  (4) 
 

for all , ,p p p x⎡ ⎤∈ ∈Ω⎣ ⎦ . 
 

The condition (4) is satisfied if  
 

 , ( ) tx xσ σ∀ ∈Ω ≤ . (5) 
 

where 
 

 { }( ) inf ( , ) : ,x x p p p pσ σ ⎡ ⎤= ∈⎣ ⎦ , (6) 

 { }( ) sup ( , ) : ,x x p p p pσ σ ⎡ ⎤= ∈⎣ ⎦ . (7) 
 

If we take into account tension and compression then the 
safety condition has the form  
 

 ( ), , , tx p p p xσ σ⎡ ⎤∀ ∈Ω ∀ ∈ ≤⎣ ⎦ . (8) 
 

in tension and 
 

 ( ), , , cx p p p xσ σ⎡ ⎤∀ ∈Ω ∀ ∈ ≤⎣ ⎦ . (9) 
 

in compression. Then in order to check the safety of the 
structure with the interval parameters we need to know the 
value of the interval stress ( ) ( ) , ( )x x xσ σ σ⎡ ⎤∈ ⎣ ⎦ . 

III. EXAMPLE – BAR WITH INTERVAL PARAMETERS 

Let us consider a bar under tension which is shown in the       
Fig. 1 
 

 
Fig. 1- Bar under tension 



 
The [ ]210,212E GPa∈ , [ ] 20.0024,0.0026A m∈ , 

[ ]250,252T MPaσ ∈ . [550,590]P kN∈ . The structure is safe 
if  
 

 T
P
A

σ σ= ≤  (10) 

 

In this case 245.8 MPaσ = , 250 T MPaσ =  then the 
structure is safe. 

EXAMPLE – BAR WITH RANDOM SET PARAMETERS (UPPER 
PROBABILITY APPROACH) 

Now let’s consider the same structure but now the force P is 
described by the following random set 1( ) [550,560]P kNω = , 

2( ) [550,570]P kNω = , 3( ) [560,590]P kNω = , 

4( ) [520,570]P kNω = . The area of cross-section is described 

by the following random set 3 2
1( ) [2.4,2.7]10A mγ −∈ , 

3 2
2( ) [2.5,2.7]10A mγ −∈ , 3 2

3( ) [2.2,2.6]10A mγ −∈ . We 

assume that { } { } { } { }1 2 3 4
1
4

P P P Pω ω ω ωΩ Ω Ω Ω= = = =  and 

{ } { } { }1 2 3
1
3

P P Pγ γ γΓ Γ Γ= = = . Upper probability of failure 

can be calculated form the following condition [6] 
 

 ( ) ( ) 4, : 0.33
( ) 12f T

PP P
A
ωω γ σ
γΩ×Γ

⎧ ⎫
= > = =⎨ ⎬

⎩ ⎭
 (11) 

TABLE 1 -  INTERVAL STRESS 
( , )σ ω γ  Value [MPa] 

1 1( , )σ ω γ  [203.704, 233.333] 

2 1( , )σ ω γ  [203.704, 237.500] 

3 1( , )σ ω γ  [207.407, 245.833] 

4 1( , )σ ω γ  [192.593, 237.500] 

1 2( , )σ ω γ  [203.704, 224.000] 

2 2( , )σ ω γ  [203.704, 228.000] 

3 2( , )σ ω γ  [207.407, 236.000] 

4 2( , )σ ω γ  [192.593, 228.000] 

1 3( , )σ ω γ  [211.538, 254.545] 

2 3( , )σ ω γ  [211.538, 259.091] 

3 3( , )σ ω γ  [215.385, 268.182] 

4 3( , )σ ω γ  [200.000, 259.091] 
 

IV. EXAMPLE – BAR WITH RANDOM SET PARAMETERS - 
(CLOUDS THEORY APPROACH) 

Let us consider the same data as in the previous example and 
calculate the following upper probability.  
 

 ( ) ( )( ) , :
( )

PF P
A
ωσ ω γ σ
γΩ×Γ

⎧ ⎫
= >⎨ ⎬

⎩ ⎭
 (12) 

 

The graph of the function ( )F σ  is on the Fig. 2. 
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Fig. 2- Graph of the function ( )F σ  

 
Now upper probability of failure can be calculated as 
 

 4( )
12f TP F σ= =  (13) 

 

Above results are consistent with the theory of clouds which 
was introduced by the Arnold Neumaier [7]. 

V. DESIGN OF TRUSS STRUCTURES 

In the case of truss structures the condition (8) or (9) must be 
satisfied in all bars. Let us consider a truss structure which is 
shown in the Fig. 3. Number of bars are shown on the Fig. 4. 
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Fig. 3- 15 element truss structure 
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Fig. 4- Elements of truss structure 

 

MPa 



The data in the calculations are the following: 
[ ]199, 201E GPa∈ , 20.06 A m∈ , [96,104]P kN∈ . The 

interval axial forces are given in the Table 2. In calculations 
we assume that 0P Pγ=  where  
 
TABLE 2 -  INTERVAL STRESS  
(COMBINATORIAL APPROACH, DEPENDENT PARAMETERS) 

No. of 
element 

iσ  [MPa] iσ  [MPa] 

1 -3.680 -3.390 
2 -0.377 -0.348 
3 0.695 0.753 
4 0.348 0.377 
5 -2.710 -2.500 
6 -1.070 -0.983 
7 0.148 0.160 
8 -0.227 -0.209 
9 0.348 0.377 

10 -2.710 -2.500 
11 -1.070 -0.983 
12 0.148 0.160 
13 0.695 0.753 
14 -0.377 -0.348 
15 -3.680 -3.390 

 
All stresses in the Table 2 are smaller than allowable stress 

0 250MPaσ =  then the structure is safe. 
In above described example the Young modulus and forces 
are all dependent. If we consider the case of independent 
forces and Young modulus we have the results which are 
shown in the Table 3. 
 
TABLE 3 -  INTERVAL STRESS IN TRUSS  
(COMBINATORIAL APPROACH, INDEPENDENT CASE) 

No. of 
element 

iσ  [MPa] iσ  [MPa] 

1 -3.680 -3.390 
2 -0.410 -0.314 
3 0.684 0.765 
4 0.327 0.397 
5 -2.720 -2.500 
6 -1.080 -0.967 
7 0.107 0.201 
8 -0.259 -0.177 
9 0.327 0.397 

10 -2.720 -2.500 
11 -1.080 -0.967 
12 0.107 0.201 
13 0.684 0.765 
14 -0.410 -0.314 
15 -3.680 -3.390 

 
Because stress in all bars is smaller than allowable stress then 
the structure is safe. The results are shown in the Tables 2 and 

3 was calculated using combinatorial approach [5]. The results 
which calculated using sensitivity analysis in the case of 
independent parameters are shown in the Table 4. 
 
TABLE 4 -  INTERVAL STRESS IN TRUSS  
(INDEPENDENT CASE, SENSITIVITY ANALYSIS) 

No. of 
element 

iσ  [MPa] iσ  [MPa] 

1 -3.680 -3.390 
2 -0.409 -0.317 
3 0.687 0.764 
4 0.330 0.392 
5 -2.720 -2.500 
6 -1.080 -0.971 
7 0.109 0.201 
8 -0.254 -0.178 
9 0.332 0.396 
10 -2.720 -2.500 
11 -1.080 -0.968 
12 1.120 0.196 
13 0.685 0.764 
14 -0.409 -0.317 
15 -3.680 -3.390 

 
The results are good approximation of the combinatorial 
solution and they indicate that the structure is safe. 

VI. DESIGN OF FRAME STRUCTURES WITH INTERVAL 
PARAMETERS 

In the case of frame structures the maximum stress can be 
calculated as a combination of bending and tension 
 

 N M
A Z

σ = ±  (14) 
 

where M is bending moment, N is axial force, A is area of 
cross-section and Z is section modulus. In the simplest case Z 
can be calculated as 
 

 
max

JZ
z

=  (15) 

 

The structure is safe if 
 

 yt
N M
A Z

σ± ≤  (16) 
 

in tension and 
 

 yc
N M
A Z

σ± ≤  (17) 

 

in compression, where ycσ  is a yield stress in compression 

and ytσ  is a yield stress in tension. 
 
 
 



VII. FRAME STRUCTURE EXAMPLE 

A single bay single storey portal frame as shown in Fig. 5 is 
chosen as an illustrative example. 
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Fig. 5- Portal frame 

 
In the case of interval uncertainty two different approaches are 
presented.  
In first approach the interval bending moment and the interval 
axial force will be computed and then the condition (16) or 
(17) will be checked. The interval internal forces can be 
calculated using the method introduced by Rama Rao [8], 
combinatorial approach or sensitivity analysis [5]. 
In the second approach the condition is checked directly. In 
this case the left side of the equation (16) or (17) is calculated 
combinatorial approach or sensitivity analysis [5] and then the 
whole interval relations (16) or (17) are checked. 
In calculations the following numerical data was used: 

250y MPaσ = , 1 [199,201]E GPa∈ , 2 [199,201]E GPa∈ , 

3 [199,201]E GPa∈ , 2
1 0.01A m= , 2

2 0.01A m= , 
2

1 0.01A m= , 6 4
1 8.333 10J m−= ⋅ , 6 4

2 8.333 10J m−= ⋅ , 
6 4

3 8.333 10J m−= ⋅ , max 0.05z m= , [ ] 22.4,2.6 /q kN m∈ , 

[ ]9.6,10.4P kN∈ , [ ]4.9,5.1M kNm∈ . Cross-section is a 

square ( 20.1 0.1m× ). 
Interval bending moment and axial force are shown in the 
Table. 5. The values were calculated in the nodal points.  
 
TABLE 5 -  INTERNAL FORCES 

N  [kN] N  [kN] M  [kNm] M  [kNm] 
-5.08 -5.78 3.80 2.08
-5.78 -5.08 -8.30 -7.33
2.62 2.01 -7.33 -8.30
2.01 2.62 7.90 9.06
5.78 5.08 4.03 2.93
5.08 5.78 -6.45 -5.10

 

TABLE 6 -  MAXIMUM STRESSES (INDIRECT APPROACH) 
N M
A Z
−  [MPa] N M

A Z
+  [MPa] 

-23.329 -12.985 11.898 22.243
49.208 43.402 -50.294 -44.488
44.242 50.048 -43.780 -49.585

-54.145 -47.211 47.673 54.608
-23.594 -17.006 18.092 24.680
31.082 39.212 -38.126 -29.996

 
The results from the endpoint combination method are in the 
Table 7. 
 
TABLE 7 -  MAXIMUM STRESSES (COMBINATORIAL APPROACH) 

N M
A Z
−  [ MPa ] N M

A Z
+  [ MPa ] 

-23.399 -12.986 11.968 22.245 
43.498 49.173 -50.330 -44.514 
44.210 50.010 -49.493 -43.802 

-54.075 -47.217 47.625 54.592 
-23.601 -17.071 18.099 24.745 
31.090 39.277 -38.134 -30.061 

 

VIII. RAMA RAO’S  METHOD 

In the case of frame structures the maximum stress can be 
calculated as a combination of bending and tension 
 

 1 2σ σ σ= ±  (18) 
 

where 1direct stress N
A

σ =  and bending stress 

2
M
Z

σ = ,where M is bending moment, N is axial force, A is 

area of cross-section and Z is section modulus. In the simplest 
case Z can be calculated as 
 

 
max

JZ
z

=  (19) 

 

As per the Indian steel code IS 800-1984 [11], the structure is 
safe if 
 

 1 ,t allowσ σ≤  (20) 
 

in tension and 
 

 1 ,c allowσ σ≤  (21) 
 

in compression and 
 

 2 ,b allowσ σ≤  (22) 
 

in bending, subject to the condition 
 

 1 2

, ,
1

t allow b allow

σ σ
σ σ

+ ≤  (23) 



 

for combined axial tension and bending and  
 

 1 2

, ,
1

c allow b allow

σ σ
σ σ

+ ≤  (24) 

 

for combined axial compression and bending, where 
, 0.6t allow yfσ =  and , 0.66b allow yfσ = , 

, min (0.6 , )c allow y acfσ σ=  where 
 

 
2

1 20.6   ,  cc y
ac y cc

n n n
cc y

f f Ef f

f f

σ
λ
∏

= =
⎡ ⎤+⎣ ⎦

 (25) 

 

where n = 1.4 ,  E is the Young’s modulus, λ is the 
slenderness ratio of the member and  yf is the Yield stress. 

IX. EXAMPLE PROBLEM - 2 

A single bay- single storey portal frame as shown in figure 
below is chosen as an illustrative example. Columns have a 
cross section of 0.3m×0.2m and beam has a cross section of 
0.3m×0.25m. Young’s modulus is 200GPa. Load P = 150kN 
and q = 37.5kN/m. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6- Portal frame 
 
The membership function for load and Young’s modulus are 
shown in figures 7 and 8.  
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Fig. 7 

Membership function for load

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Normalised load

M
em

be
rs

hi
p 

va
lu

e

 
Fig. 8 

 
The structural response of the portal frame is obtained at 
various levels of membership value ranging from 0 through 1 
using the procedure developed by Rama Rao [8]. Interval 
values of axial force and bending moment are computed using 
this procedure. Table 8 shows the normalised interval values 
of load and Young’s modulus adopted at each level of α. 
For example, at α = 0.4, loads are P = 150[0.4,1.6] kN, 
q = 37.5[0.4,1.6] kN/m and E = 200[0.97,1.03] GPa. The 
corresponding values of axial force and bending moment in 
element 1 at node 2 are shown in Table 9. 
Combined membership functions are plotted for axial stress 
and bending stress and combined stress using the procedure 
described by Moens and Vandepitte [9] and earlier by 
Buckley [10]. 
These stresses are plotted in Fig. 9, 10 and 11. Fig 9 and 10 
show the combined membership functions for axial stress and 
bending stress. In figure 10, the thick vertical line shows the 
allowable bending stress. Fig. 11 shows a plot of combined 

stresses 1σ  and 2σ . In this figure, the thick horizontal line at 
α =0.2 represents the limit interval stresses satisfying the 
above equation.  
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Fig. 9 
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Fig.. 10 

 
 
TABLE 8 -  UNCERTAIN  INPUT DATA 
α Load 

Normalised 
E 

Normalised 
0 [0.0,2.0] [0.950,1.050] 

0.1 [0.1,1.9] [0.955,1.045] 
0.2 [0.2,1.8] [0.960,1.040] 
0.3 [0.3,1.7] [0.965,1.035] 
0.4 [0.4,1.6] [0.970,1.030] 
0.5 [0.5,1.5] [0.975,1.025] 
0.6 [0.6,1.4] [0.980,1.020] 
0.7 [0.7,1.3] [0.985,1.015] 
0.8 [0.8,1.2] [0.990,1.010] 
0.9 [0.9,1.1] [0.995,1.005] 

1 [1.0,1.0] [1.000,1.000] 
 

TABLE 9 - INTERVAL FORCES AND MOMENTS IN ELEMENT 1 
α Axial Force 

(kN) 
Bending Moment 

(kNm) 
0 [0,185.9] [0, 26.45] 

0.1 [7.5,174.7] [10.4, 245.3] 
0.2 [15.3,163.7] [21.0,  229.5] 
0.3 [23.2,152.9] [31.9, 214.1] 
0.4 [31.3,142.3] [43.1, 199.1] 
0.5 [39.5,132.0] [54.5, 184.4] 
0.6 [47.9,121.9] [66.2, 170.0] 

0.7 [56.5,111.9] [78.2, 156.0] 
0.8 [65.3,102.2] [90.4, 142.3] 
0.9 [74.3,92.7] [102.9, 128.8] 

1 [83.4,83.4] [115.7, 115.7] 

X. CONCLUSIONS 

Numerical results obtained in this paper indicate that it is 
possible to design frame and truss structures with the interval, 
fuzzy and random sets parameters. In order to get the value of 
the uncertain limit state, combinatorial method, sensitivity 
analysis and indirect method were applied. Numerical results 
reveal small differences between the indirect method which is 
based on the interval arithmetic and the combinatorial method. 
This difference is caused by the overestimation of the interval 
evaluation of the limit state equation, in presented examples 
that difference is very small. Fuzzy limit state is treated as 
family of interval limit states. Presented approach can be 
extended to the design of 2D or 3D structures with a given 
limit state equations. 
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